

A framework for measuring sustainability in the Swedish food system

- indicator selection and justification

Helena Hansson (WP-leader), Elin Röös, Sarah Säll, Assem Abou Hatab, Serina Ahlgren, Åsa Berggren, Ellinor Hallström, Peter Lundqvist, Ulf Magnusson, Martin Persson, Lotta Rydhmer, Pernilla Tidåker, Anna Winkvist, Lihua Zhu

Mistra Food Futures Report #14 A framework for measuring sustainability in the Swedish food system - indicator selection and justification

Ett ramverk för att mäta hållbarhet i det svenska livsmedelssystemet - val och motivering av indikatorer

Authors: Helena Hansson (WP-leader), Sarah Säll, Assem Abou Hatab, Dept. of Economics, SLU Swedish University of Agricultural Sciences, Elin Röös, Pernilla Tidåker, Dept. of Energy and Technology, SLU, Åsa Berggren, Dept. of Ecology, SLU, Peter Lundqvist, Dept. of People and Society, SLU, Ulf Magnusson, Dept. of Clinical Sciences, SLU, Lotta Rydhmer, Dept. of Animal Breeding and Genetics, SLU, Lihua Zhu, Dept. of Plant Breeding, SLU, Serina Ahlgren, Ellinor Hallström, Dept. of Agriculture and Food, RISE Research Institutes of Sweden, U. Martin Persson, Dept. of Space, Dept. of Space, Earth and Environment, Chalmers University of Technology, Anna Winkvist, Dept. of Internal Medicine and Clinical Nutrition, University of Gothenburg, SU Sahlgrenska.

The overarching vision of the programme Mistra Food Futures is to create a science-based platform to enable transformation of the Swedish food system into one that is sustainable (in all three dimensions: environmental, economic and social), resilient and delivers healthy diets. By taking a holistic perspective and addressing issues related to agriculture and food production, as well as processing, consumption and retail, Mistra Food Futures aims to play a key role in initiating an evidence based sustainability (including environmental, economic and social dimensions) and resilience transformation of the Swedish food system. This report is a part of Mistra Food Future's work to identify the next generation's food system sustainability indicators, one of the central activities within Mistra Food Futures.

Mistra Food Futures is a transdisciplinary consortium where key scientific perspectives are combined and integrated, and where the scientific process is developed in close collaboration with non-academic partners from all parts of the food system. Core consortium partners are Swedish University of Agricultural Sciences (SLU), Stockholm Resilience Centre at Stockholm University and RISE Research Institutes of Sweden.

Publication: Mistra Food Futures Report #14 Year of publication: 2023 Publisher: Swedish University of Agricultural Sciences Cover illustration: Susanne Flodin Print: SLU Grafisk Service, Uppsala ISBN: 978-91-8046-841-1(electronic), 978-91-8046-840-4(print)

FUNDED BY

Table of contents

Introduction	4
1. CEILING: Healthy, adequate and safe diets for all	6
1.1 Theme: Healthy and adequate diets	6
1.1.1 Diet quality	6
1.1.2 Nutrient adequacy	11
1.1.3 Energy balance	16
1.2 Theme: Food safety	18
1.2.1 Burden of foodborne illness	18
1.2.2 Antimicrobial resistance	22
1.2 Theme: Ensure food availability	27
1.3.1. Food available from Swedish production	27
1.3.2. Trade possibilities of food products	
1.3.3 Stable commodity prices	
2. CEILING: Just, ethical and equitable food systems	35
2.1. Theme: Market power	35
2.1.1 Extent of market concentration	35
2.2 Theme: Safe jobs	
2.2.1 Working conditions in the food system	
2.3 Theme: Contribution to cultural values	43
2.3.1 Attractive landscapes	43
2.3.2. Preservation of food related traditions	46
2.3.3 Recreational values	48
2.3 Theme: Rights of indigenous people	49
2.3.1 Protect the rights of the Sami people	49
2.4 Theme: High animal welfare	51
2.4.1. Total welfare index	51
3. FLOOR: Clean and healthy planet	60
3.1 Theme: Climate stabilization	60
3.1.1 Greenhouse gas emissions	60

3.2 Theme: Biodiversity conservation	65
3.2.1 Terrestrial biodiversity	66
3.2.2 Aquatic biodiversity	75
3.2.3 Diversity of domesticated plants and animals	79
3.3 Theme: Preservation of natural resources	83
3.3.1 Land use	83
3.3.2 Water use	86
3.3.3 Energy use	90
3.3.4 Mineral fertiliser use	94
3.4 Theme: Clean air and water	97
3.4.1 Eutrophication	97
3.4.3 Use of toxic substances	100
3.4.5 Air pollution	103
3.5.1. Soil fertility	
3.5.2. Water management	108
4. WALLS: The economy as a tool for sustainable food systems	111
4.1. Economic wall 1: Governance	112
4.1.1 Efficient policy	112
4.1.2 Trust in institutions	120
4.2 Economic wall 2: Economic enablers	121
5.2.1. Returns to total economic capital	121
4.2.2. Autonomy	124
5.2.3 Diversity in production	127
References	129

Introduction

Being able to assess the sustainability of food systems is central to evaluate policy implemented to remedy their sustainability problems, to monitor performance over time and to function as input to policy makers' decisions. This report introduces a catalogue of suggested themes, sub-themes and indicators for assessing food system sustainability in Sweden. The themes, sub-themes and indicators builds on previous work that developed food system sustainability frameworks, mainly Hebinck et al. (2021) who suggests an integrated framework for food system sustainability assessment building on a comprehensive review of the literature.

From a conceptual perspective, the report builds on a model developed by Mistra Food Futures researchers in 2022 - 23 (Hansson *et al.*, 2023), where a food system sustainability framework for Sweden is suggested to take the form of a *Food System Sustainability House* (Fig 1). The Food System Sustainability House is developed around the following key assumptions about a sustainable food system:

- The overall aim of a national food system (following Hebinck et al. (2021)) is to provide healthy, safe and adequate diets for all. In addition, the food system should be just, ethical and equitable. These two aspects form the ceiling of the food system.
- The environmental foundations for the food system activities are viewed as a floor, or as a foundation for the system, representing restrictions on human actions and behaviors within the system. The environmental foundations are central for future continuous food security, and the food system has to rest upon a functioning ecosystem foundation.
- The economic system takes the role of an enabler, which makes the system work. To this end, we need companies that can produce raw material and food, and policy that can ensure, that external effects by the food system actors are taken into considerations by actors in their decision-making. This implies that the external effects are internalized. The economic indicators developed for the Food System Sustainability House for Sweden are designed to measure performance in relation to this overall function of the system. The economic system, separated between enablers for producers and consumers on the one hand side and governance on the other hand side, functions as 'walls' in the system, connecting the floor with the ceiling.

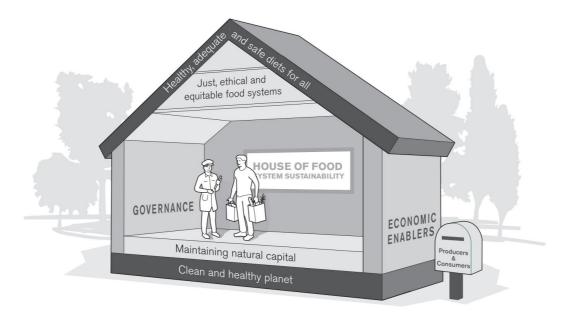


Figure 1: The Food System Sustainability House. Source: Hansson et al., (2023).

The report now continues by introducing and motivating themes and indicators to assess food system sustainability based on the Food System Sustainability House. The themes and indicators are adapted for the Swedish food system.

For each indicator, we give suggestions for official and what we call science-based targets. Official targets are targets currently reflected in official policy documents. Such are currently lacking for most of the indicators.

Each indicator are also classified using the Driver (D)-Pressure (P)-State (S)-Impact (I)-Response (R) framework (Kristensen, 2004). This framework illustrate where along the cause-effect chain indicators are located. *Drivers* include the human activities that drive *pressures* (e.g. natural resource use, emissions) that lead to a change in the socioeconomic and ecological *state* and *impacts* on these systems that eventually lead to societal responses (e.g. policy responses).

Catalogue of themes and indicators for the Food System Sustainability House for Sweden

1. CEILING: Healthy, adequate and safe diets for all

Healthy, adequate and safe diets are central to human health as well as to food system sustainability. In the latest update of The Global Burden of Disease project (GBD 2019), low-quality, non-diverse diets were the second (women) or third (men) leading risk factors for premature death, causing 3.48 and 4.47 million premature deaths per year among women and men, respectively.

The theme healthy, adequate and safe diets is divided into three sub-themes focusing on healthy and adequate diets (1.1), food safety (1.2) and food availability (1.3). The selection of indicators was based on indicators previously proposed to monitor nutrition, health, food safety and availability aspects in food sustainability frameworks (Fanzo et al., 2021; Hebinck et al., 2021; Bené et al., 2019; Chaudhary et al., 2018), which were also judged to be relevant for the Swedish population.

1.1 Theme: Healthy and adequate diets

Poor diets are identified as one of the largest behavioral risk factors for disease and premature death globally and in Sweden. Adoption of healthier diets could substantially reduce the risk of morbidity and mortality from non-communicable diseases. For example, 46% of ischaemic heart disease cases and 15% of stroke cases are estimated to be associated with poor dietary habits in Sweden (IHE, 2021).

1.1.1 Diet quality

Territorial-based indicator(s)

NA

Consumption-based indicator(s)

Mean population intake of critical food groups per day or week.

Description: The indicator measures mean food intake levels in the Swedish population in relation to recommended intake levels in Swedish food-based dietary guidelines.

Indicator:	Mean population intake of critical food groups per day or week.
Indicator label:	Т - 1.1.1а-е
Type according to DPSIR:	S
Target:	Recommended intake levels in Swedish food-based dietary guidelines (SFA, 2022a; NCM, 2014)
Data source:	National dietary surveys by the Swedish Food Agency (SFA, 2012; 2018).

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Poor diets are	Well established	Quantitative	Straight-forward in
identified as one of the	indicator proposed in	indicator.	evaluating the
largest behavioral risk	previous sustainability	Easy and intuitive	sustainability of
factors for disease and	frameworks.	to interpret.	current intake levels
premature death in	Data from national	Clearly reflects	and follow trends
Sweden.	dietary surveys allow	trends in intake of	based on national food
Adoption of	for detailed	specific foods and	intake data.
healthier diets could	assessments of food	food groups.	Official food-based
substantially reduce	intake.	Available data	dietary guidelines are
the risk of morbidity	Self-reported food	allow for assessment	only available for a
and mortality from	intake data is	of differences in food	limited selection of
non-communicable	hampered by	intake between	food groups. These are
diseases.	uncertainty e.g.,	population groups.	often based on
	underreporting of	Intake of specific	maximum or minimum
	unhealthy foods.	food groups are easier	levels of intake, which
	Quality of food	to interpret and	may be difficult to
	intake data is	communicate	translate into targets
	hampered by national	compared to	that are more specific.
	dietary intake surveys	aggregated indicators	
	on adults being	such as dietary quality	
	performed only every	or diet diversity	
	10 years.	scores.	

The indicator proposed for diet quality in previous sustainability frameworks (Fanzo et al., 2021; Hebinck et al., 2021; Bené et al., 2019; Chaudhary et al., 2018) are primarily based on food intake levels, adherence to dietary guidelines or aggregated diet scores reflecting the overall diet quality or diversity. In this framework, diet quality is proposed to be

measured by the mean population intake of food groups identified as critical for the Swedish population. In the literature, several diet scores for the total diet are described and have to some extent also been developed based on the Swedish dietary guidelines (Moreaus et al., 2020; Gonzales-Padilla et al., 2022; Drake et al., 2011). These are not suggested as indicators in this framework because aggregated scores are often considered more difficult to interpret compared to indicators for specific food groups and often lack defined thresholds and goals for benchmarking. In this framework, diet diversity is assumed to be captured by including a combination of indicators on different food groups and adequacy of critical nutrients.

For diet quality, there are few examples of defined absolute limits to use as goals or thresholds for healthy intake levels. Dietary guidelines in general emphasize the importance of diet diversity to support health. However, to define healthy intake levels within a specific food group is difficult as this depends on the overall diet composition and will vary depending on individual characteristics and the cultural and regional context. Due to this, it is challenging to set general goals for healthy food intake levels that are scientifically based and useful at the national level. In Sweden, food-based dietary guidelines exist for some food categories and provide an indication of recommended intake levels from a health perspective (SFA, 2022a). These guidelines are often described as a minimum (e.g., fruits and vegetables) or maximum (e.g., red meat, added sugar, alcohol) level of intake. Others have suggested targets for dietary intake developed from a broader sustainability perspective considering more aspects than health (Willet et al., 2019; SFA 2021a). To monitor public health in Sweden, several indicators are used of which "risk consumption of alcohol" and "daily intake of vegetables" are food-based indicators (The Public Health Agency of Sweden, 2022a).

The national dietary surveys that provide information on food intake in the Swedish adult population are performed approximately every ten years (SFA, 2022b) complemented by surveys focusing on other age groups, e.g., children and adolescents performed at regular basis (SFA, 2018). In addition, a national health survey is performed every second year which includes questions on the frequency and intake levels of fruits and vegetables, sweetened beverages, seafood and alcohol (The Public Health Agency of Sweden, 2022b). The per capita food supply data are provided by the Swedish Board of Agriculture on a yearly basis. The per capita food supply data are useful to follow dietary trends in the population but are less appropriate for benchmarking against targets based on food intake e.g., food-based dietary guidelines, since the supply data includes food that is available but not eaten, e.g., food waste. Another limitation of per capita supply data is their inability to capture differences in dietary habits between population groups. In this framework, food intake data from the national dietary surveys (SFA, 2012; 2018) are suggested as the most suitable source of food intake data to measure diet quality in Sweden. These data have several advantages, e.g., the level of detail in the dietary data from a wide variety of food groups and the possibility to estimate mean intake levels of different population groups. Although it is well known that self-reported dietary data often suffer from misreporting and that it would be desirable for the indicator to be based on data that were updated more frequently, this is the most comprehensive source on food intake in the Swedish population which can also be benchmarked against the food-based dietary guidelines. To monitor food consumption trends more regularly, these data could be complemented with food intake and supply data from other sources that are updated more frequently.

Food-based dietary guidelines can be used to benchmark food intake in a population either by comparing the mean intake levels of a specific food group within a population group to a recommended level of intake (e.g., 500g fruits and vegetables per day) or by estimating the percentage adherence to dietary guidelines within the population (e.g., 20% adherence of recommended intake of fruits and vegetables in the adult population). In this framework, the approach of comparing current intake levels to recommended intake levels is suggested to be most useful as it provides information on how close or far dietary patterns are compared to the recommendations. To capture risk groups in the population, the indicator should preferably measure the diet quality both at an aggregated level, e.g., mean intake of the total adult population, and in specific population groups that differ in terms of gender, age and socioeconomic characteristics.

Food groups measured by the indicator

Diet quality should preferably be measured by intake levels of food groups identified as critical for achieving healthy diets in the Swedish population.

The food groups proposed to be measured by the indicator are intake of:

- Fruits and vegetables (including legumes)
- Whole grains
- Red and processed meat
- Seafood
- Discretionary foods

The selection of critical food groups proposed was guided by the following criteria (1-3). The food groups selected fulfill all or most of the criteria outlined.

1) Specification of recommended intake levels in food-based dietary guidelines The indicator for diet quality aims to measure the adherence to dietary guidelines within the Swedish population. For the food groups proposed, the recommended quantitative intake levels are specified in the Swedish dietary guidelines (SFA, 2022a; NCM, 2014). The food groups proposed are also included in the diet quality scores developed based on the current Swedish dietary guidelines (Gonzales-Padilla et al., 2022; Moreaus et al., 2020).

According to the Swedish dietary guidelines, the recommended intake levels of fruits and vegetables (including legumes) are at least 500 g per day. The recommended intake level of whole grains is 75 g per 10 MJ, equivalent to about 70 g per day for women and 90 g per day for men. The intake of red and processed meat is recommended to be a maximum of 500 g of cooked meat per week, with processed meat intake limited to a minor share of the total red meat intake. The seafood intake is recommended to be 2-3 times per week, equivalent to about 45 g seafood per day (Moraeus et al., 2020) The discretionary foods, as defined in the proposed indicator, include several food groups that contribute substantially to the total energy intake in the Swedish population while providing a small nutritional contribution. For example, in the Swedish dietary survey of adults (SFA, 2012), intake of an aggregated food group consisting of soda, cordial, energy drinks, sweetened soups, desserts, fruit puré, marmelades, pastries, ice cream, sugar, honey and snacks was estimated. No official recommended intake level is available for the broader category of discretionary foods in the Swedish dietary guidelines. However, such recommendations exist for some of the food groups (i.e., added sugar and alcoholic drinks) included in the broader category of discretionary foods, which justifies the selection of the indicator. The

intake levels of added sugar are recommended to be limited to maximum 10% of the total energy intake, equivalent to about 50-75 g per day for adults. The intake levels of alcoholic drinks are recommended to a maximum of 10 g and 20 g of alcohol per day for men and women, respectively. In addition, an indicator to monitor consumption of discretionary foods in Sweden was recently proposed by the Swedish Food Agency (2021a). The indicator proposed, which also is potentially useful as a complementary indicator in this framework, is based on national statistics of direct consumption from the Swedish Board of Agriculture for the following foods: alcoholic beverages, soda, sugar, syrup, coffee, tea, cacao, honey, chocolate, confectionery, ice cream and pastries.

2) Low adherence of dietary guidelines in the average Swedish population The indicator for diet quality aims to measure the intake of food groups where changes in the Swedish diet is most needed. The adherence of current dietary guidelines was judged based on data from the most recent national dietary survey of adults in Sweden (SFA, 2012). The food groups for which mean intake levels in the adult Swedish population were below the recommended levels or above maximum recommended levels were considered of special relevance to include as indicators for diet quality.

According to the most recent self-reported data available on national level, the mean intake levels of fruits and vegetables, whole grains, and seafood are below recommended levels in the Swedish adult population. The mean intake levels of red and processed meat are above the maximum recommended levels and the intake of added sugar reach the maximum recommended intake levels.

3) High significance for diet-related health outcomes in the Swedish population The indicator for diet quality aims to measure the intake of food groups with highest relevance for preventing negative diet-related health effects and promoting positive dietrelated health effects in the Swedish population. The evidence for diet-related health effects differs between the different food items and food groups. In addition, the diet-related health effects of a specific food will vary depending on the intake level. The food groups ranked as the top dietary risk factors in the Swedish population were considered of special relevance to capture by the indicator for diet quality. For this criterion, risk factors based on data from the Global Burden of Disease were used (IHME, 2022). The dietary risk factors were measured by the number of deaths per 100 000 individuals in Sweden, including both sexes and all ages in 2019.

The low intake of vegetables (ranked as number 8 by IHME), fruit (Nb 7) and legumes (Nb 2) are ranked among the top dietary risk factors in the Swedish population by IHME (2022). The low intake of whole grains is identified as the number one dietary risk factor and the high intake of red (Nb 3) and processed meat (Nb 4) are also identified among the top dietary risk factors. The low intake of seafood is not ranked among the top 15 dietary risk factors in the Swedish population. However, the low intake of omega-3 fatty acids (Nb 12) is identified among the top dietary risk factors and seafood is a main source in the

Swedish diet (SFA, 2012). Within the category of discretionary foods, the high intake of sweetened beverages (Nb 13) is ranked among the top dietary risk factors. The high intake of alcoholic drinks is not classified as a dietary risk factor but is identified as the third most important behavioral risk factor in the Swedish population after tobacco and dietary risks (IHME, 2022). In addition to the food groups proposed to be measured by the indicator for diet quality, the low intake of milk (Nb 14) and nuts and seeds (Nb 10) are identified among the top 15 dietary risk factors in the Swedish population. These were not proposed to be measured by the diet quality-indicator in this framework as they did not fulfill the other criteria defined. However, the intake of nutrients mainly provided by these food groups (e.g., calcium for which milk is the main source in the Swedish diet [SFA, 2012]) are suggested as nutrients to measure by the indicator for nutrient adequacy.

1.1.2 Nutrient adequacy

Territorial-based indicator(s):

NA

Consumption-based indicator(s):

Mean population intake of critical nutrients per day

Description: The indicator measures mean nutrient intake in the Swedish population in relation to the reference values for nutrient intake in the Nordic Nutrition Recommendations (NCM, 2014).

Indicator:	Mean population intake of critical nutrients per day.
Indicator label:	Т - 1.1.2а-е
Type according to DPSIR:	S
Target:	Reference values for nutrient intake (e.g., average requirement [AR]) (NCM, 2014)
Data source:	National dietary surveys by the Swedish Food Agency (SFA, 2012; 2018).

Relevant:	High-quality:	Interpretable:	Useful:
Nutrition adequacy	Well established	Quantitative	Challenging to
is fundamental to	indicator proposed in	indicator that is easy	select the nutrients
maintain health.	previous sustainability	and intuitive to	most relevant to
The indicator can,	frameworks.	interpret.	monitor. Relevance of
together with	Data from national	Clearly reflects	individual nutrients
indicators on diet	dietary surveys allow	trends in intake levels	may differ between
quality, serve as a	for detailed	of specific nutrients.	population groups.
proxy for diet	assessments of	Available data	Bioavailability of
diversity.	nutrient intake.	allow for assessment	nutrients and
	Self-reported food	of differences in	nutritional status in the
	intake data are	nutrient intake	population is not fully
	hampered by	between population	captured by the
	uncertainty e.g.,	groups.	indicator.
	underreporting of	Intake of specific	
	unhealthy foods.	nutrients is easier to	
	Quality of food	interpret and	
	intake data are	benchmark compared	
	hampered by the	to aggregated	
	national dietary intake	indicators such as	
	surveys on adults	nutrient quality scores.	
	being performed only		
	every 10 years.		

Justification for indicator choice:

Nutrition adequacy is fundamental to maintain health and body functions. In Sweden, dietrelated health problems are mainly associated with excessive energy intake and poor diet quality. Undernutrition in the Swedish population is related mainly to specific micronutrients and to specific groups of the population with special requirements (SFA 2012; 2018). Measuring nutrient adequacy is of large importance in interdisciplinary food sustainability frameworks to capture the nutritional effects from dietary changes driven by other sustainability perspectives (e.g., ecologic or economic perspectives).

In previous sustainability frameworks (Fanzo et al., 2021; Hebinck et al., 2021; Bené et al., 2019; Chaudhary et al., 2018), indicators proposed for nutrient adequacy are primarily based on nutrient intake levels related to reference values (e.g., population share with adequate nutrients), aggregated nutrient quality scores, or metrics focusing on undernutrition (e.g., prevalence of stunting in children or nutritional deficiencies). In this framework, undernutrition is not measured per se, instead an indicator of the adequacy of critical nutrients is proposed because if intake of these nutrients is insufficient then

deficiency and undernutrition will later occur. While several nutrient quality scores exist and provide the opportunity of using an aggregated nutrition indicator accounting for nutrient adequacy of multiple nutrients (e.g., the Swedish-adapted Nutrient Rich Food index: (Bianchi et al., 2020; van den Bergh, 2010; Strid *et al.*, 2021) they were not proposed as indicators in this framework due to some limitations of their use. For example, nutrient quality scores are often considered difficult to interpret, may hide information about specific nutrients, and lack defined thresholds/goals for benchmarking.

In the Nordic Nutrition Recommendations (NCM, 2014) reference values are defined for a large number of nutrients. A food sustainability framework could either include all these or a selection of the nutrients. The selection of which nutrients to monitor, and what such prioritizing should be based on, may differ between population groups. In this framework we suggest a selection of nutrients identified as the most critical in the Swedish population. For nutrition adequacy, the reference values for individual nutrients could be used as a basis to develop goals and thresholds values. For example, the average requirement (AR) is the reference value primarily used to assess the risk for inadequate intake of micronutrients in a certain group of individuals whereas the recommended intake (RI) refers to the amount of a nutrient that meets the requirements and maintains the nutritional status among practically all healthy individuals of a certain age and gender group (NCM, 2014).

The national dietary surveys that provide information on the average nutrient intake levels in the Swedish adult population are performed approximately every ten years (SFA, 2012), complemented by surveys focusing on other age groups, e.g., children and adolescents performed at regular basis (SFA, 2018). The supply of selected nutrients based on per capita food supply data are provided by the Swedish Board of Agriculture on yearly basis. The supply data could be useful to follow trends in the Swedish population but are not appropriate for benchmarking the nutrient intake levels against the existing reference values. Another limitation of per capita supply data is their inability to capture differences between population groups. In this framework, the nutrient intake data from the national dietary surveys (SFA, 2012; 2018) are suggested as the most suitable data to measure nutrient adequacy in Sweden. These data have several advantages, e.g., the level of detail and possibility to estimate the mean intake levels of different population groups. Although it is well known that self-reported dietary data often suffer from misreporting and it would be desirable for the indicator to be based on data that were updated more frequently, this is the most comprehensive data source on nutrient intake in the Swedish population which also can be benchmarked against existing reference values. To monitor trends in nutrient intake more regularly, these data could be complemented with food intake data from other sources that are updated more frequently e.g., Swedish food basked dietary surveys (SFA, 2022b). Complementary data may also be needed to capture specific risk groups of the population, e.g., pregnant women and the elderly. Several population-based epidemiological studies are ongoing in Sweden which could be another source of information on nutrient content and the nutritional status of specific nutrients in certain

groups of the population. When considering the use of these data, it should however be considered that these studies are supported by research funding which may affect the availability of continuous updated data in the future.

The reference values for nutrients can be used to benchmark the nutrient intake in a population either by direct comparison of the mean intake levels of a specific nutrient within a population group to the reference value, or by estimating the population share with the adequate nutrient intake. In this framework, the approach of comparing the current intake levels to reference values is suggested to be the most useful as it provides information on how close or far current intake levels are compared to the recommendations. To capture risk groups in the population, the indicator should preferably measure nutrient adequacy at different levels, e.g., as the mean intake of total adult population, and in specific population groups that differ in terms of gender, age and socioeconomic characteristics.

When assessing the nutrient adequacy, it is important to distinguish between nutrient intake and nutritional status. Most data available to assess nutrient adequacy are based on the content of nutrients in the food ingested. However, to provide nutrition and thereby contribute to body function and health, nutrients need to be bioavailable, i.e., they need to be digested, absorbed and metabolized (FAO, 2021). The bioavailability of nutrients is affected by various factors (e.g., content of antinutrients in the food, meal effects, nutritional status) and is therefore difficult to assess. The effect of bioavailability is to some extent accounted for in the official reference values for nutrient intake. However, to assess the nutritional status for individuals or population groups with greater accuracy, biomarkers such as blood samples are required. For this purpose, it may be possible to use data from the health care sector to follow up the nutritional status of specific nutrients in risk groups of the population (e.g., iron status in pregnant women).

Nutrients measured by the indicator

Nutrient adequacy is suggested to be measured by the intake levels of nutrients identified as most critical for achieving nutritious diets in the Swedish population. The nutrients proposed to be measured by the indicator are intake of:

- Sodium
- Saturated fat
- Calcium
- Vitamin D
- Iron

Only nutrients for which recommended intake levels are defined in the Nordic Nutrition recommendations (NCM, 2014) were proposed to be measured by the indicator for nutrient adequacy. The selection of nutrients was further guided by the following criteria (1-2). The nutrients proposed fulfill all or most of the criteria outlined. When selecting nutrients, non-redundancy of indicators was also considered, i.e., nutrients mainly provided by food

groups measured by the indicator for diet quality were not proposed to be measured by the indicator for nutrient adequacy.

1) Low adherence of nutrition recommendations in the average Swedish population

The indicator for nutrient adequacy aims to measure the intake of nutrients where the need for changes in the Swedish diet is most needed. The adherence to the current nutrition recommendations was judged based on data from the most recent national dietary survey of adults in Sweden (SFA, 2012). The nutrients for which mean intake levels in the Swedish population were below recommended levels or above maximum levels were considered of special relevance to capture by the indicator for nutrient adequacy.

According to the latest Swedish dietary survey of adults (SFA, 2012), the mean intake levels of sodium and saturated fat are above the maximum recommended levels, whereas the mean intake of vitamin D and iron are below the recommended levels in the adult population. The mean intake levels of calcium are in line or above the recommended levels.

Fibre, folate, potassium and carbohydrates are additional nutrients for which the mean intake levels in the Swedish adult population are estimated to be below the recommended levels. These nutrients were not proposed to be measured either because they did not fulfill the other criteria defined, and/or because the food groups mainly providing these nutrients in the Swedish diet were proposed to be measured by the indicator for diet quality (e.g., intake of fibre from whole grains, fruits and vegetables including legumes).

In the latest national dietary survey of adults (SFA, 2012), the nutrient intake in the Swedish population was compared with the Swedish dietary guidelines from 2005. A recent assessment (Lemming and Pitsi, 2022) updated the comparison based on the Nordic Nutrition Recommendations 2012 (NCM, 2014) and showed similar results.

2) High significance for diet-related health outcomes in the Swedish population

The indicator for nutrient adequacy aims to measure the intake of nutrients with the highest relevance for preventing negative diet-related health effects and promoting positive diet-related health effects in the Swedish population. In line with the method used for selecting the food groups to measure by the indicator for diet quality, risk factors based on data from the Global Burden of Disease study were used for this criterion (see section 1.1.1).

The high intake of trans-fatty acids (ranked as number 9) and the low intake of polyunsaturated fatty acids (Nb 11), omega-3 fatty acids (Nb 12) and calcium (Nb 15) are nutrients ranked among the top dietary risk factors in the Swedish population by IHME (2022). Among these, only calcium was proposed to be measured by the indicator for nutrient adequacy. The other nutrients were not selected as they did not fulfill the other criteria defined and/or because the food groups mainly providing these nutrients in the Swedish diet were proposed to be measured by the indicator for diet quality (e.g., intake of omega-3 fatty acids from seafood).

1.1.3 Energy balance

Territorial-based indicator(s):

NA

Consumption-based indicator(s):

Body mass index (BMI)

Description: The indicator measures energy balance by the body mass index in the Swedish population.

Indicator:	Body mass index (BMI) (kg/m ²)
Indicator label:	C-1.1.3a
Type according to DPSIR:	S
Target:	BMI below 25
Data source:	BMI of adult men and women and some groups of adolescents and children is provided by the Public Health Agency of Sweden (2022c)

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Excessive energy	Well established	Quantitative	Straight-forward in
intake is a large	indicator proposed in	indicator that is easy	evaluating the current
behavioral risk factor	previous sustainability	and intuitive to	status and in following
for disease and	frameworks.	interpret.	trends based on
premature death.	National BMI data	Clearly reflects	available national data.
In Sweden half of	are self-reported	trends in overweight	
the adult population is	which undermines the	and obesity of the	
overweight or obese.	quality of data.	population.	
Share of population	National BMI data		
with overweight and	in adults are provided		
obesity is increasing.	every second year. For		
	children in some age		
	groups data are		
	provided every 4		
	years.		
	BMI is partially		
	determined by non-		
	food related factors		
	such as physical		
	activity and genetics.		

Overweight and obesity are known risk factors for several non-communicable diseases, e.g., cardiovascular disease and type 2 diabetes. In Sweden, half of the adult population is overweight or obese and the prevalence is increasing (The Public Health Agency of Sweden, 2022e). Overweight and obesity are ranked among the primary causes of healthy years lost in the Swedish population (GBD, 2019).

In previous sustainability frameworks (Fanzo et al., 2021; Hebinck et al., 2021; Bené et al., 2019; Chaudhary et al., 2018), indicators proposed for energy balance, overweight and obesity are primarily based on body measures, such as the BMI (e.g., prevalence of overweight/obesity in adults/children/adolescents) or energy intake levels (e.g., share of population with a balanced energy intake). In this framework energy balance is proposed to be measured by the BMI in the population.

BMI is a body measure expressing the ratio of weight to height. Overweight means a BMI between 25-29.9 and obesity a BMI of 30 or higher. BMI is a commonly used indicator for overweight and obesity that is easy to monitor and interpret. BMI is one of the indicators currently used to measure public health in the Swedish population (The Public Health Agency, 2022d). Recently, the share of the adult population with a BMI above 25 in different population groups was also suggested as an indicator to monitor the sustainability of food consumption in Sweden by the Swedish Food Agency (2021a). However, using BMI as an indicator of energy balance also has some limitations, for example, that it only partly is determined by the energy intake and is affected by several factors (e.g., physical activity, genetics) which are outside the scope of this framework and its focus on the food system. In addition, self-reported body measures are known to suffer from underreporting (Swedish Food Agency, 2021b). Even so, BMI is suggested as the most suitable indicator to measure energy balance in the Swedish population based on the current availability of data.

The self-reported data on prevalence of overweight expressed as the BMI in the adult Swedish population are available and updated every second year (The Public Health Agency of Sweden, 2022c). These data are available for men and women, as well as for different education levels. For children and adolescents, the data for BMI are available from a survey performed every fourth year since 1985/86, targeting boys and girls in the ages 11, 13 and 15 years providing self-reported data on length and body weight (The Public Health Agency of Sweden, 2019). The available data on the BMI of the Swedish population are based on self-reported data, which negatively affects the reliability. In the future, it would be desirable to collect objectively measured data to monitor the body weight of the Swedish population (SFA, 2021a).To capture risk groups in the population, the indicator should preferably measure the BMI for different population groups by gender, age and socioeconomic characteristics (SFA, 2021a).

In addition to BMI, data to monitor the energy intake and supply of the Swedish population are available from the Swedish Food Agency via the national dietary surveys (performed every ten years) (SFA, 2012; SFA 2018) and from the Swedish Board of Agriculture (updated on yearly basis). Both data sources have some drawbacks, which limit their usefulness as indicators for energy balance. Self-reported energy intake data from dietary surveys are known to suffer greatly from underreporting, especially among adults, and are therefore not considered as a reliable source of data in this framework. The per capita supply data do not provide information on what is actually eaten, hide information on differences between population groups and are not applicable for benchmarking against

the reference values for energy intake. Therefore, these data are not considered suitable to monitor the energy balance of individuals or population groups but may be useful to provide an indication of the national trend of per capita energy levels available.

The Nordic Nutrition Recommendations (NCM, 2014) provide reference values for the recommended energy intake (MJ/d) specified for men and women with a normal BMI and two levels of physical activity. The reference values for adults are provided for three specific age groups and are also available for children between 0-2 years of age, and in different age groups between 2-17 years old. Official targets useful to benchmark energy balance on a population level are not established. However, the mean energy requirement in the total Swedish population has been estimated to be 9.7 MJ per day (SFA, 2022c). The reference values for energy intake from the Nordic Nutrition Recommendations are useful to evaluate the energy intake based on actual intake levels and are therefore not applicable for benchmarking against the energy supply e.g., provided by the Swedish Board of Agriculture. A report from the Swedish Food Agency (SFA, 2021a) recently suggested national indicators and goals for overconsumption of energy and food. The proposed goal for 2030 was a per capita daily energy supply of 12 MJ (2870 kcal) based on direct consumption data from the Swedish Board of Agriculture. The proposed goal for the energy supply includes food that is wasted and has a margin to allow for a potential increase of energy demand due to unpredicted food security crisis and/or increase of physical activity in the Swedish population and therefore does not relate to the reference values for energy intake. The suggested indicator and goal are useful to monitor the energy supply in the population but are not suitable to use as a target for the energy balance in the population.

1.2 Theme: Food safety

Food safety, i.e., the handling, preparation and storage of food that prevent foodborne illnesses is crucial to human health. Food contamination may occur in any of the stages between production and consumption, and includes physical, chemical and biological contamination. Globally, bacterial contamination is the most common cause of foodborne illness. The overuse of antibiotics in livestock production is related to food safety since it leads to antimicrobial resistance, which lately has emerged as a global threat to human health.

1.2.1 Burden of foodborne illness

Territorial-based indicator(s):

NA

Consumption-based indicator(s):

National number of clinical reported cases of foodborne illnesses expressed per year and number of individuals

Description: The indicator captures the burden of foodborne illnesses expressed as number of clinical reported cases per year.

Indicator:	National number of clinical reported cases of foodborne illnesses
	expressed per year and number of individuals
Indicator label:	T-1.2.1a
Type according to DPSIR:	S
Target:	Swedish Food Agency has a general goal of keeping food safe (SFA, 2021a) No existing national quantitative target exist for foodborne illnesses. National targets exist to reduce foodborne illnesses and health effects from environmental pollution National targets also exist for specific foodborne illnesses e.g., National incidence of human cases of Salmonella should decrease compared to the current level (National Board of Health and Welfare, 2013) National incidence of infection with VTEC in humans should show a clear downward trend (National Board of Health and Welfare, 2014) SDG Target 3.9: Mortality from environmental pollution: Reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination
	SDG Target 3.3: By 2030 end the epidemics of AIDS, tuberculosis, malaria, and neglected tropical diseases and combat hepatitis, water-borne diseases, and
Data source:	other communicable diseases.The Swedish Food Agency estimates the national disease burdencaused by the most common microorganisms spread via food based onclinically reported cases on yearly basis (SFA, 2019)National statistics of disease burden (The Public Health Agency ofSweden, 2022d)

Justification	for	indicator	choice:
Justification	jor	maicaior	choice.

Relevant:	High-quality:	Interpretable:	Useful:
Suggested as a	Self-reported cases	Quantitative	Useful to evaluate
relevant indicator in	of foodborne illnesses	indicator.	the current status and
previous sustainability	are known to greatly	Easy and intuitive	follow trends based on
frameworks.	underestimate the true	to interpret.	available national data.
Foodborne illness	number of cases.		No official target to
is a global problem	Clinical reported		evaluate current
affecting 1 in 10	cases of foodborne		performance and
people worldwide	illness is suggested as		development.
	a more reliable source		
	of data for quantitative		

measures and	
following trends.	
National data on	
clinical reported cases	
of foodborne illness	
are provided on a	
yearly basis.	
Cases of foodborne	
illness do not capture	
long-term health	
effects associated to	
e.g., dioxins and heavy	
metals.	

The burden of foodborne illness is the indicator most commonly suggested to measure food safety in previous sustainability frameworks (Fanzo et al., 2021; Hebinck et al., 2021; Bené et al., 2019; Chaudhary, Gustafson and Mathys, 2018). Indicators for foodborne illness can also be related to the prevalence or numbers of specific pathogens or to human cases of foodborne illnesses. Other indicators proposed focus on countries' abilities to ensure the safety and health of food (e.g., Food Safety Score:Chaudhary, Gustafson and Mathys, 2018) by exploring structural elements of food safety (e.g., share of population with access to potable water).

Foodborne illness refers to the toxicity or infections caused by bacteria, viruses, parasites, molds or chemical substances entering the body through contaminated food or water (Hebinck et al., 2021) and include a wide range of diseases from diarrhea to cancers. Foodborne illnesses affect one in ten people worldwide every year and is a growing public health problem (WHO, 2022a). While foodborne illness is a global problem its burden primarily affects infants, children and elderly, especially in low- and middle-income countries (WHO, 2019, 2022a). In Europe, foodborne illnesses transmitted by animals (e.g., salmonellosis and campylobacteriosis) or animal parasites, antimicrobial resistance (see below) and various chemical hazards (e.g., persistent organic pollutants, acrylamide, pesticides and dioxin) are examples of public health risks (WHO, 2019).In Sweden, microbial hazards pose the greatest public health risk causing acute illness whereas chemical hazards are mainly related to long-term health effects (SFA, 2021d).

In Sweden the Swedish Food Agency handles data on foodborne illnesses. A report on the national reported suspected cases of foodborne illness has been published on yearly basis since 2003 (SFA, 2021b). The report provides information on the number of reported cases (suspected and confirmed) and the number of disease cases. Information is also available on the underlying cause, which food the case was associated to and which period of the year the case was reported. The quality of data based on self-reported cases of foodborne illness are known to be hampered by under-ascertainment and underreporting and are therefore not well suited for quantitative measures or to follow trends. For these purposes, cases of foodborne illness based on clinical records is a more reliable source of data. The Swedish Food Agency estimates the national disease burden caused by the most common microorganisms spread via food based on clinical reported cases (SFA, 2019). The reported cases are used to provide national statistics of the disease burden that are updated on a yearly basis (The Public Health Agency of Sweden, 2022d). In this framework, these data are suggested as the most suitable data to measure the foodborne illnesses in Sweden. To allow for comparisons with countries that differ in population size it is suggested that the number of cases is expressed per year and the number of individuals.

The cases on foodborne illness primarily capture illness caused directly from food intake (short-term effects). Other indicators may therefore be needed to capture the potential long-term health effects e.g., from chemical hazards, viruses and bacteria. However, linking long-term health effects to particular substances is difficult as the clinical effects often occur long after exposure and may depend on many different factors. The data to monitor intake from chemical hazards are available from the Swedish Food Agency through various surveys. The environmental toxins in the blood and mothers' milk and the share of the population using safe water are other indicators listed in the Swedish Agenda 2030 indicator list.

To strengthen countries' capacities to assess the burden of foodborne illness, the WHO proposed a method to quantify the foodborne disease incidence, mortality and disease burden in terms of disability-adjusted life years (DALYs) (WHO, 2015). This indicator includes the burden of foodborne disease based on over 30 hazards affecting more than 30 diseases. Within the WHO initiative, tools and protocols were developed to facilitate national studies of the burden of foodborne illness. According to Hebinck et al. (2021), a foodborne disease burden database is under development by the WHO which may be an additional source of data. The WHO indicator is not suggested for use in this framework as it includes several hazards that are important health risks mainly in low-income regions of the world but not as relevant for Swedish conditions. Several countries, e.g., Denmark and the Netherlands, produce data on the DALYs related to foodborne hazards on a yearly basis (Pires et al., 2021). The burden of disease expressed as the DALYs has also been calculated for the most common foodborne micro-organisms in outbreaks in Sweden for the period 2013-2017 by the Swedish Food Agency (2019). However, the DALYs are not used for the yearly reporting of foodborne illness in Sweden but could be explored as a possible future alternative indicator.

The Swedish Food Agency has an overall goal of keeping food safe with specific targets to ensure safe drinking water and reducing foodborne illness and health effects from environmental pollution e.g., chemical hazards (SFA, 2022d). In addition, national targets exist for specific foodborne illnesses. However, no quantitative national targets exist specifically for foodborne illness (SFA, 2021d). In previous sustainability frameworks, goals for food safety are most often set for prevalence of specific pathogenic microorganisms or targets for the recorded cases of a specific foodborne disease (Hebinck et al., 2021). The official targets for health risks due to chemical hazards in food set on a population level are not available in Sweden (SFA, 2021d). However, per capita intake levels can be evaluated over time and compared against health-based guidance values (e.g., tolerable weekly intake) proposed by the European Food Safety Authority (EFSA). To minimize the health risk of specific chemicals, a safety margin should be kept between the levels of exposure in the population and the doses that could pose a health risk. At an international level, the SDG target 3.9 focusing on mortality from environmental pollution expresses an overall goal to reduce the number of deaths and illnesses from hazardous chemicals and air, water and soil pollution and contamination. Furthermore, the SDG target 3.3 expresses a goal to end the epidemics of several food-borne illnesses by 2030.

1.2.2 Antimicrobial resistance

Microbes include bacteria, fungi, viruses and parasites. Antimicrobials are a broad range of products that act on microbes, including antibiotics that are used to treat bacterial infections. Antimicrobial resistance (AMR) occurs naturally in microbes, but develops faster when antimicrobial pharmaceuticals are used. AMR makes such pharmaceuticals ineffective for the treatment of infections, thereby threatening public health as well as animal health, welfare and productivity. At large, the more antimicrobials we use, the worse does the emergence of AMR get. Thus, it is important to use these pharmaceuticals as restrictive as possible.

Territorial-based indicator(s):

Sales of antibiotics for different animal species used for food production, in mg/PCU. PCU (population corrected unit) is a measure of use standardised for the total amount (biomass) of animals

Indicator Indicator label:	Sales of antibiotics for different animal species used for food production, in mg/PCU. PCU (population corrected unit) is a measure of use standardised for the total amount (biomass) of animals. T-1.2.2a
Type according to DPSIR:	P
Target:	The national goal for the number of antibiotics treatments in humans, set by Strama - the Swedish strategic programme against antibiotic resistance, is less than 250 prescriptions/1000 inhabitants and year (www.strama.se). There is no national goal for the number of treatments in animals. In Sweden, sale of antibiotics to animals used for food production is a national indicator (indicator 2.4.4 and 12.1.3) for SDG2 (zero hunger) and SDG12 (responsible consumption and production), although the UN's SDGs do not specifically include AMR. WHO, FAO (Food and Agriculture Organization of the United Nations) and World Organisation for Animal Health (formerly OIE) all have global action plans or strategies against AMR, but no specific goals. The EU commission will "take action to reduce overall EU sales of antimicrobials for farmed animals and in aquaculture by 50% by 2030" (Farm to Fork Strategy, 2020). The need to reduce the use of antibiotics by choosing appropriate kinds of antibiotics and only for the treatment of sick animals is agreed on. The goal is a prudent, medically rational use of antibiotics.

Description: The indicator describes the sales of antibiotics in veterinary medicine.

Data source:	The Swedish Board of Agriculture:	
	https://jordbruksverket.se/download/18.48cc999c17f29af389def6b/165	
	1577852975/Forsaljning-av-djurlakemedel-2021-tga.pdf	
	The National Veterinary Institute:	
	https://www.sva.se/media/8da965da486b11e/swedres_svarm_2021.pdf	

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Antimicrobial	There are scientific	Sold amounts of	Amount of sold
resistance is regarded	evidence for	antibiotics is a proxy	antibiotics is already
as one of the largest	associations between	for the use of	used as a national
threats to future	the use of antibiotics	antibiotics that is a	indicator for SDG2
human health, and to	in animal production	quantitative indicator	and SDG12.
sustainable food	and antimicrobial	easy and intuitive to	
systems.	resistance.	interpret.	

Consumption-based indicator(s)

Antimicrobial resistance value for imported foods to supply Swedish diets

Description: The indicator is based on the sales of antibiotics in veterinary medicine for countries and species where such data are available and on a qualitative judgement based on the laws against misuse of antibiotics in animal production when data on the sales are not available. The indicator reflects the use of antibiotics for a species in a country and the amount of imported food products of that species from that country.

Indicator:	If data on the sales of antibiotics are available for the country	
	Sales of antibiotics for different animal species used for food	
	production, in mg/PCU, will be used for species and countries for the	
	few countries where these data are available. The PCU (population	
	corrected unit) is a measure of the use standardized for the total	
	amount (biomass) of animals within each country. For countries where	
	only the total sales for animals (not specified for species) are available,	
	an expert opinion based on general knowledge about the use of	
	antibiotics for different species will be used to estimate the distribution	
	of the total amount over different species in each country.	
	If data on the sales of antibiotics are missing for the country	
	The existence of national laws regulating the use of antibiotics for	
	animals will be used as an indicator for countries not reporting sales of	
	antibiotics. Such laws can ban or regulate:	

	• use of Critically Important Antimicrobials – or other		
	antimicrobials – for human medicine (CIA) in veterinary medicine		
	 use of antimicrobials as feed additives for growth promotion regular use of antimicrobials for disease prevention 		
	The judgement will take law compliance into account, using the		
	Rule of Law Index from the World Justice Project. The qualitative		
	judgement of laws will be translated into judgement points for each		
	species using the range of sales of antibiotics in reporting countries		
	(see above) as a reference scale. Thus, the judgement points and sales		
	of antibiotics can be used for the same purpose in this framework.		
	Estimation of AMR indicator value		
	The AMR (antimicrobial resistance) indicator value for animal-		
	source food originating from a given species in a given country will be		
	estimated based on the amount of imported animal-source products and		
	sales of antibiotics in mg/PCU or the amount of imported animal-		
	source products and qualitative judgment points.		
Indicator label:	C – 1.2.2c		
Type according to	Р		
DPSIR:			
Target:	WHO, FAO and OIE all have global action plans against		
	antimicrobial resistance, but not specific goals. The EU commission		
	will "take action to reduce overall EU sales of antimicrobials for		
	farmed animals and in aquaculture by 50% by 2030" (European		
	Commission, 2020b).		
	The need to reduce the use of antibiotics by choosing the		
	appropriate kinds of antibiotics and only for the treatment of sick		
	animals is agreed on. The goal is a prudent, medically rational the use		
	of antibiotics.		
Data source:	ESVAC interactive database		
	https://esvacbi.ema.europa.eu/analytics/saw.dll?PortalPages		
	Sales of veterinary antimicrobial agents. ESVAC report 2021		
	https://www.ema.europa.eu/en/documents/report/sales-veterinary-		
	antimicrobial-agents-31-european-countries-2019-2020-trends-2010-		
	2020-eleventh_en.pdf Hu and Cowling, (2020)		
	nu anu Cowinig, (2020)		
	Rabello <i>et al.</i> , (2020)		
	Wallinga <i>et al.</i> , (2022)		
	Tiseo <i>et al.</i> , (2020)		

Regulation and reporting: Maron et al. Globalization and Health 2013, 9:48. http://www.globalizationandhealth.com/content/9/1/48 OIE Annual report on antimicrobial agents intended for use in animals. <u>https://www.woah.org/app/uploads/2021/03/annual-report-amr-3.pdf</u>
Law compliance: The World Justice Project (Rule of Law Index). https://worldjusticeproject.org/rule-of-law-index/

ustification for indicator choice:			
Relevant:	High-quality:	Interpretable:	Useful:
Antimicrobial	There are scientific	Sold amounts of	Data on the sold
resistance is regarded	proves for the	antibiotics is a proxy	amounts of antibiotics
as one of the largest	associations between	for the use of	aimed for different
threats to future	the use of antibiotics	antibiotics that is a	animal species are
human health, and to	in animal production	quantitative indicator	difficult to find for
sustainable food	and antimicrobial	easy and intuitive to	most countries. For
systems.	resistance.	interpret.	several countries, even
	The qualitative	Whether a country	data on the total
	judgement points	has a law regulating	amount sold for
	based on laws and law	the use of antibiotics	animals are missing.
	compliance can be	in veterinary medicine	Data on laws
	questioned, and this	and as growth	regulating the use of
	estimation must	promotors or not is	antibiotics are
	therefore be reported	easy to interpret.	available for many
	with full transparence		countries (in theory).
	for each country and		The usefulness of the
	species.		indicators based on
			laws is restricted by
			variation in law
			compliance. Law
			compliance can be
			taken into account by
			adjusting the
			evaluation based on a
			law compliance index.

Justification for indicator choice:

All use of antimicrobials for humans and animals increase the risk of microbes developing resistance to antimicrobials. The fight between antimicrobials and microbes takes place in healthy and sick humans and animals and in the environment, e.g. in manure from treated animals. For example, when manure is used to fertilize the soil, bacteria in the manure that have achieved resistance due to mutations can transfer these resistance genes to other species of bacteria in the soil. One Health is a concept describing how the health of people, animals and our shared environment is closely connected. Antimicrobial resistance (AMR) is a core One Health issue. It should be handled with a One Health approach which means that joint efforts of different disciplines work together to provide solutions for human, animal and environmental health. Sick animals have a low welfare and they increase climate impact and other negative environmental effects of animal production by decreased yields and increased consumption of natural resources per amount of food product. The EU's Farm to Fork strategy (2020)(European Commission, 2020b) states that "Antimicrobial resistance (AMR) linked to the excessive and inappropriate use of antimicrobials in animal and human healthcare leads to an estimated 33,000 human deaths in the EU/EEA every year."

Antibiotics are needed in both human and veterinary medicine to cure infections, enable advanced surgery, transplants, cancer treatments etc. In total, 62.3 tons of antibiotics were sold in Sweden during 2021, of which 14 % was sold for animals (including sport and companion animals). Expressed as the active substance per estimated weight of body mass, 13 % were sold for animals (Swedres-Svarm, 2021). The animals that need antibiotics should be treated with the right substance in the right dose during the right treatment period. A completely antibiotic-free animal husbandry would be unacceptable from an animal welfare perspective. Thus, the goal is not a zero use of antibiotics, but a prudent, medically rational use of antibiotics. One example of a non-prudent use is when all piglets are treated with antibiotics at weaning, as a regular prevention. It is important to prevent infectious diseases by good management routines (e.g. cleaning of stables between animal batches) and breeding (e.g. selection for increased disease resistance), because healthy animals do not need antibiotics. In some production systems in some countries, antibiotics called 'growth promotors' are given to all animals during certain periods of their life. This is done in order to increase production levels. Sweden was the first country in the world that banned antibiotics as growth promotors (1986) and it has been forbidden in the EU since 2006. Since January 2022, use of antibiotics as regular disease prevention is also prohibited in the EU.

The indicators in this framework reflect the use of antibiotics as an indicator of healthy, adequate and safe diets although the food products from animals treated with antibiotics are not unhealthy in themselves. AMR is an *indirect* food safety aspect related to the use of antibiotics in the production of animal-source food. The amounts of antibiotics actually used for animals are not known, but the sales of antibiotics are reported. For many

countries, the total amount of antibiotics sold for animals is available, and it can be used as an indicator describing animal production in different countries. The data on the amount (and type) of antibiotics sold for cattle, sheep, goats, pigs, poultry and fish are available for Sweden, but the distribution of antibiotics sold to different species or production systems in other countries are difficult to find. An alternative indicator for production could be the number of reported cases of failed treatments due to AMR from animal and or human health care data bases, or prevalence of AMR organisms from scientific studies of e.g. samples from farmers, animals, manure and soil. We have chosen the indicator based on the sales of antibiotics for this framework since AMR is not only an existing issue today but also (and even more) a future issue; the amounts of antibiotics used in animal production today influences the magnitude of the future AMR threat.

Since the sales of antibiotics are not reported in all countries (data are missing e.g. from several countries on the American continents), alternative indicators are needed for consumption. The fact that a country does not report its sales of antibiotics can be used as an indicator in itself; a country not reporting and sharing data on the sales of antibiotics indicates that the animal production in that country is less sustainable. The presence of laws restricting the use of antibiotics in veterinary medicine and banning the use of antibiotics for regular prevention and as growth promotors is an indicator that can be used for the imported animal-source food from different countries.

1.2 Theme: Ensure food availability

The theme focuses on ensuring that sufficient food and a variety of nutrients are available for the Swedish population, as well as the extent to which Swedish agriculture contribute to global food supply. This is measured by what is produced in Sweden in terms of i) total kcal produced, protein, fat, and fruit and vegetables available, both of the fields and what reaches the final consumer, and ii) trade channels which relates to how Sweden can either support other countries if facing food shortages, or import food if there is risk of food insecurity within the country, and last iii) stable commodity prices for consumers such that households can plan and afford nutritious food. In relation to Hebinck et al. (2021) these themes cover increased food security and nutrition, and the right to food.1.3.1. Production of food

1.3.1. Food available from Swedish production

Territorial-based indicator(s):

Domestically produced nutrients of the fields, and domestically produced fruit & vegetables in relation to the population need

Description: Indicators measuring the amount of energy, protein, fat, and fruits and vegetables produced in Sweden. Domestically produced volumes of these indicates the extent to which the current production is sufficient to ensure the domestic needs of nutrients.

Indicator	Domestically produced nutrients of the fields, and domestically produced fruit & vegetables in relation to the population need.	
Indicator label:	T-1.3.1a	
Type according to	S	
DPSIR:		
Target:	Increased food production (Regeringskansliet, 2015)	
Data source:	The Swedish Board of Agriculture:	
	https://statistik.sjv.se/PXWeb/pxweb/sv/Jordbruksverkets%20statistikd	
	atabas/?rxid=5adf4929-f548-4f27-9bc9-78e127837625	
	The Swedish Food Agency:	
	https://www.livsmedelsverket.se/livsmedel-och-	
	innehall/naringsamne/livsmedelsdatabasen	

Indicator justification:

Relevant:	High-quality:	Interpretable:	Useful:
The total amount of	What is produced	Easily interpreted.	A large share of the
nutrients and fruit and	in Sweden in terms of	The indicator	total amount of
vegetables produced of	kcal, protein, fats, and	highlights if there is	produced nutrients is
the fields' show how	fruit and vegetables is	enough available	used for feed (and
many people can be	easily calculated	nutrients produced in	biofuel). As such, a
fed from the fields, if	during times of	Sweden to feed the	share of produced
what is produced in	normality. Production	population.	nutrients is lost. The
the primary sector is	information is		indicator shows how
used for food, and not	accessible from the		many people can
e.g. for feed. The	Swedish Board of		potentially be fed if all
indicator is likely	Agriculture, and		that is produced from
relevant mostly to	nutritional content		the fields is used for
highlight vulnerability	from the Swedish		human consumption.
in relation to a crisis, if	Food Agency.		
Sweden would need to			
feed its own			
population entirely by			
itself.			

Domestically produced nutrients and fruit and vegetables that reach the consumer, in relation to population need

Description: Indicators measuring the amount of energy, protein, fat, and fruits and vegetables produced in Sweden, and which finally reach the consumers through consumption goods of Swedish origin. Domestically produced volumes of these indicates the extent to which the current production is sufficient to ensure the domestic needs of nutrients, at current diets.

Indicator	Domestically produced nutrients and fruit and vegetables that reach the consumer, in relation to the population need.
Indicator label:	T-1.3.1b
Type according to DPSIR:	S
Target:	Increased food production (Regeringskansliet, 2015)
Data source:	The Swedish Board of Agriculture: <u>https://statistik.sjv.se/PXWeb/pxweb/sv/Jordbruksverkets%20statistikd</u> <u>atabas/?rxid=5adf4929-f548-4f27-9bc9-78e127837625</u> The Swedish Food Agency: https://www.livsmedelsverket.se/livsmedel-och- innehall/naringsamne/livsmedelsdatabasen

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The total amount of	What is produced	In essence, the	It is useful to
nutrients and fruits and	in Sweden in terms of	indicator shows how	know how many
vegetables delivered	kcal, protein, total fat,	many people can be	people can be fed
from Swedish	and fruit and	fed from the	from what is
production to the final	vegetables is easily	agricultural land that is	produced, after value
consumer, highlights	calculated during	used in Sweden, given	added.
how many can be fed	times of normality.	value added.	
when primary products	Production		
are transformed to final	information is		
products. The indicator	accessible from the		
thus includes losses	Swedish Board of		
when e.g. grain is used	Agriculture, and		
for feed.	nutritional content		
	from the Swedish		
	Food Agency.		
	Final supply		
	available for		
	consumption is		

available from the Statistical database	
provided by the Board	
of Agriculture.	

We suggest that total amount of kcal, protein, fat, and fruit and vegetables is measured from the two indicators. The nutrients are included in the indicator framework as the available amount per ton food, and fruit and vegetables as tons of food. The first indicator measures the potential number of people fed by what is primarily produced in Sweden, and the second how many can be fed today given dietary patterns that include value added and processing. In both cases taking dietary recommendation into consideration as a basis for the calculations. The indicators can also be down scaled to number of people fed per hectare as suggested by e.g. (Cassidy *et al.*, 2013)

The included nutrients, and fruit & vegetables are suggested by e.g. Kummu *et al.*, (2020) as a measure of food supply diversity, which is an additional aspect for sustainable production and supply. Our two indicators thus also highlight how dependent Sweden is on trade to supply diverse food to the population. Sweden is a country with large import levels of food. As an example, only around 20% of the fruit and vegetables consumed are domestically produced, and 55-60% of the beef (Swedish Board of Agriculture, 2021). In addition, Sweden is a country with high consumption levels of meat and dairy, and much of what comes from the agricultural fields is used as feed, reducing available nutrients reaching the final consumer (Swedish Board of Agriculture, 2014, (Swedish Board of Agriculture, 2022). Combining the two included measures show how many additional people could be sustained by domestically produced food if e.g. grain and grain legumes was not used for feed (and bioenergy).

The four indicators can be calculated from information about production and consumption of different types of food commodities which is available from the Swedish Board of Agriculture and the nutritional content found at the Swedish Food Agency.

Consumption-based indicator(s):

NA

1.3.2. Trade possibilities of food products

Territorial indicator:

NA

Consumption indicator:

Diversity of trading connections – Shannon diversity index

Description: The indicator assesses the interconnection between the Swedish food system and food systems abroad through trading.

Indicator	Diversity of trading connections – Shannon diversity index.
Indicator label:	C-1.3.2a
Type according to	S
DPSIR:	
Target:	Several equally large connections is preferable to a few dominating
	partners, se e.g Kummu et al., 2020
Data source:	Trade partners for food products can be accessed via FAOSTAT :
Data source.	https://www.fao.org/faostat/en/#data

Dalaanati		Test a manual all la c	I.I., 6.1.
Relevant:	High-quality:	Interpretable:	Useful:
Trade is	Trading	A low value on	Yes, trade is
important for	partners and the	the Shannon index	important for food
upholding food	value of trade are	indicates a lower	availability and the
security such that	available from the	spread of trading	risk of trade
food can be	Swedish Board of	partners such that a	channels closing
transported to	Agriculture and	country is more at	increases the risk
where it is needed.	FAOSTAT	risk, and a high	of food shortages
The risk of food		value indicates a	in the event of
shortages increases		larger spread of	crisis.
if a country is		partners such that a	
highly depending		country has a lower	
on only domestic		risk of facing trading	
production, and on		difficulties.	
food from only a			
few major trade			
partners. If a			
country instead has			
many equally large			
partners, the			
possibility of			
imports in case of			
internal shocks,			
increases. In			
addition, a country			
with excess			
production can			

1	· · · · · · · · · · · · · · · · · · ·	
support others		
where shortages		
might appear if		
trade channels are		
already established.		

Open trade channels are central for stability in food availability, at least if there are not sufficient storage possibilities which can cover food losses in case of domestic production shocks. The number and size of trading partners are also important. If trade is dominated by imports from one large source, the risk of food insecurity increases in case of shocks to that country (see e.g. Kummu et al., 2020). A good example is the war in Ukraine and the reduced exports from Ukraine to east Africa, where the risk of food shortages increased due to the domination of Ukraine as a food supplier in that region. If a country has several trading partners, of similar size, the food security risk decreases. The indicator is constructed such that few or several small trading partners give low scores, and that several large partners give a higher score.

1.3.3 Stable commodity prices

Territorial-based indicator(s):

Not applicable

Consumption-based indicator(s):

KPI-J/wage increases, where KPI-J is the consumer price index for agricultural products.

Description: The indicator is a consumption food price index which considers the increases in food prices in relation to the increases in wages.

Indicator:	KPI-J / wage increases (index), where KPI-J is the		
	consumer price index for agricultural products.		
Indicator label:	C – 1.3.3a		
Type according to	S		
DPSIR:			
Official target:	Sweden has an overall inflation target of 2%/year, though		
	no target on real purchasing possibilities. Should be less than		
	or close to 1 for reduced insecurity		

Data source:	Swedish Board of Agriculture – official statistics :		
	https://jordbruksverket.se/om-		
	jordbruksverket/jordbruksverkets-officiella-		
	statistik/jordbruksverkets-statistikrapporter/statistik/2022-05-		
	16-prisindex-och-priser-pa-livsmedelsomradetarsoch-		
	manadsstatistik202203		
	and the Swedish National Mediation Office:		
	https://www.mi.se/		

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Consumer price	KPI-J is	Easily	Useful to
index for	measured by the	interpretable. The	evaluate
agricultural	Swedish Board of	indicator highlights	uncertainty in
products (KPI-J) in	Agriculture and	if food prices are	household
relation to wage	presented once per	increasing more	purchasing
increase clearly	year.	rapidly than income	possibilities,
show how food	Wage increases	level. If they are,	unrelated to
prices fluctuate in	are presented each	household	external factors
relation to income	year after all salary	expenditure	such as energy
levels.	negotiations	possibilities	prices and interest
	between employers	decrease and cause	rates which also
	and unions are	insecurity.	impacts purchasing
	finished.		possibilities.

The KPI-J is an adaptation of KPI, the main overall consumer price index, where the Swedish Board of Agriculture measures price changes of only agricultural products (gardening products excluded) available on the Swedish market.

Relating the KPI-J to wage increases shows the changes in expenditure possibilities for Swedish households when food prices fluctuate. If the ratio is close to one there is little fluctuation and insecurity for households. Households in general spend a small share of their income on food (Statistics Sweden, 2023) and one could argue there is room for fluctuation and an increase in food prices. However, a small share of income on food does not necessarily mean that consumers can spend more on food – at least not in the shortterm. Food consumers participate on other markets, such as markets for housing and energy, which means that their total expenditure – at least in the short-term – may not be easily re-distributed. For example, the expenditure on housing (and now energy) has increased rapidly over the past few years leaving little room for increases in other types of consumption. Many households could thus be negatively affected by instability in food prices.

Commonly, stable commodity prices are measured by the share of disposable income used on food. However, we argue that it is more accurate to measure the real price changes (price changes/ wage increase) as the share spent on food is affected by for example housing (via interest rates) and electricity prices. For households with small marginal, what is spent on food might be reduced in favor of housing, and families are forced to turn to charity. By measuring the real price changes, sectors outside of the food system are omitted to the extent possible from the analysis.

2.CEILING: Just, ethical and equitable food systems

Just, ethical and equitable food systems are central to a sustainable system, refer to *how* activities within the food system are organized and can be said to generally be about the fairness of the food system. Previous food system frameworks include various dimensions and themes which can be said to be related to the fairness of the food system. These include poverty and income distribution, employment, social protection, rights, gender equality, affordability, working conditions and community rights and access to knowledge and technology (e.g. Fanzo *et al.*, 2021; Béné *et al.*, 2019;). We use the overall label *Just, ethical and equitable food systems* from Hebinck et al. (2021) for this part of the Food System Sustainability House. We use four dimensions in devising indicators for the Swedish food system:

- *Market power* refers to the extent to which actors in the food value chain can exercise market power on each other and use their positions to affect prices throughout the system.
- Good jobs refers to the overall working conditions for food system workers.
- *Recreational values* to refer to the cultural and aesthetical values from the food system.
- *Rights of indigenous people* which refers to rights of having access to traditional foods.
- Animal welfare refers to the overall-welfare of the animals used to produce food.

2.1. Theme: Market power

2.1.1 Extent of market concentration

Territorial-based indicator(s):

Learner index

Description: Market concentration assesses the degree to which actors in the food system can exercise market power on other actors in the system. Here we propose to measure it through the Learner Index.

Indicator:	Learner index
Indicator label:	T-2.1.1a
Type according to	S
DPSIR:	

Target:	0 – indicating perfect competition (Unless functioning cooperatives)	
Data source:	An index can be estimated based on data from Statistics	
	Sweden's business registrar: https://www.scb.se/vara-	
	tjanster/bestall-data-och-statistik/foretagsregistret/	

Relevant:	High-quality:	Interpretable:	Useful:
Monopoly and monopsony structures that arise from cooperation between firms rather than from "natural causes" such as high start- up or fixed costs, can decrease overall welfare.	Calculating the Learner Index is straightforward given access to appropriate data. The Swedish competition authority evaluates the market concentration and competition	A high share of market power can imply inefficient pricing on the market.	Considering the market power exercised in the food value chain is highly relevant for understanding if and to what extent market concentration becomes a problem for producers and
Monopoly and monopsony structures in the food value chain imply uneven distribution of the overall welfare produced by the economic activities that takes place in the value chain.	possibilities in the food system.		consumers.

Background

Efficient market structures would be where actors can only exercise little or, preferably, no market power over each other. In a situation where firms in the food value chain exercise market power, two outcomes can happen. First, if the buyers of agricultural and/or food produce function as monopsonies, they can negotiate prices that are below their marginal benefit of the produce. In this situation, the producers will suffer from prices that are lower than they could obtain in a situation with less or no market power, where buyers would pay prices that are closer to or equal to their marginal benefit of the products. Second, if the

sellers of products exercise market power they can charge prices of their products that are above their marginal price of production. This means that the buyers will suffer from prices that are higher than what would be charged in a situation with less or no market power.

Market concentration can also have other impacts, such as impact of type of innovations that are pushed forward. See Clapp, (2021).

The food value chain can typically be described as having an "hour-glass" shape, with several agricultural producers at one end, a few firms in the processing and retail part of the chain and several consumers at the other end of the chain. In such a structure, a situation with only one major buyer of agricultural produce, it is possible that the buyer can exercise market power to decrease the payments to agricultural producers. Similarly, a situation with only one major seller of products, for example one dominant retailer, contributes to increasing the consumer prices by increased margins and by controlling the availability.

The Swedish food system includes major actors with large market shares, affecting both consumption and production. In a sustainability assessment of the food system, the indicator capturing market power thus needs to be measured at several stages of the system. The market situation of the Swedish food value chain was recently assessed by the Swedish Competition Authority, which concluded that the competition is well-functioning (Swedish Competition Authority, 2018). Still, the method applied - round-table discussions that were used to analyze the situation - may have affected the outcome.

Cooperative firms, formed by producers or consumers can have the potential to reduce the negative impact of the market power in the food value chain. However, this will only be the case if the cooperatives do not exercise their market power by acting on their monopoly and monopsony power.

Market power exercised on consumers

To assess the market power that is exercised on consumers, one can assess the market power of the retailers by assessing their Learner Index, which measures the difference between the price levels faced by consumers and the marginal costs faced by the sellers to the consumers, in relation to the price levels faced by consumers. A value close to 1 indicates high market power, while a value close to 0 indicates little or negligible market power.

Market power exercised on producers

To assess the market power that is exercised on producers, especially the agricultural producers, one can assess the market power of the buyers of agricultural produce by assessing their Learner Index. In this case, the Learner Index takes into consideration the difference between the marginal benefits of buyers and the marginal cost of producers. Again, a value close to 1 indicates high market power, whereas a value close to 0 indicates little or negligible market power.

2.2 Theme: Safe jobs

Territorial-based indicator(s):

2.2.1 Working conditions in the food system

Sick leave due to occupational accident or disease, number of days during a specified time period.

Indicator:	Sick leave due to occupational accident or disease, number		
	of days during a specified time period		
Indicator label:	T-2.2.1a		
Type according	S		
to DPSIR:			
Target:	Not available		
Data source:	Statistics Sweden: https://www.scb.se/hitta- statistik/temaomraden/jamstalldhet/ekonomisk- jamstalldhet/sjukdom-och-sjukfranvaro/		

Description: Working conditions by workers in the food system.

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Safe and secure	Sick leave	Easy to interpret	Heavily
working	longer than one	(number of days	influenced by the
environments are	week can only	during a specific	actions taken by
one of the	occur after	time period that	the food sector to
essential parts of	ordination of a	workers are on sick	reduce the risk of
the Sustainable	medical doctor.	leave due to	workers being in
development Goal	Reasons for sick	occupational	occupational
8: Decent Work	leave are reported.	accidence or	accident and/or
and Economic		disease). Increasing	developing work
Growth (Eurostat,		or decreasing has a	related disease.
2022		clear meaning,	
		where less is better	
		than more. Can be	
		followed over time.	

Incidence of unreported salaries in the food system, divided by the total number of workers.

Description: The indicator measure the incidence of unreported salaries in the food system, in relation to total number of workers.

Indicator	Incidence of unreported salaries in the food system, divided by the
:	total number of workers.
Indicator	T-2.2.1b
label:	
Туре	S
according	
to DPSIR:	
Target:	Not available
Data	The Swedish Tax Authority:
source:	https://www.skatteverket.se/privat.4.76a43be412206334b89800052864. html

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Reported	The Swedish	Easy to interpret.	Strongly related
salaries imply that	Tax Authority	Number of reported	to the workers
the companies pay	investigates the	incidences in	possibilities to
tax and social fees	occurrence of	relation to the total	enjoy social
related to salaries.	unreported salaries	number of workers	benefits connected
These also imply	using random	has a clear meaning.	to being employed.
that the workers	controls in high-	Furthermore,	
can enjoy the	risk industries.	increasing or	
social benefits		decreasing has a	
that are connected		clear meaning,	
to salaries in		where less is better	
Sweden. Properly		than more. Can be	
reported salaries		followed over time.	
also safeguard			
against			
unreasonably low			
salaries.			

Description: The indicator measures reports of serious personal injuries, incidents and deaths.

Indicator:	Report of serious personal injuries, serious incidents and
	deaths
Indicator label:	T-2.2.1b
Type according to	
DPSIR:	
Target:	Not available
Data source:	The Swedish Work Environment Authority, outcome of random controls: https://www.av.se/

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Safe and	Employers are	Easy to interpret.	Heavily
secure working	requested to report	Number of reported	influenced by the
environments are	incidence at work	incidences has a	actions taken by
one of the	which means	clear meaning.	the food sector to
essential parts of	personal injuries,	Furthermore,	reduce the risk of
the Sustainable	serious incidents or	increasing or	workers being in
development Goal	deaths according to	decreasing has a	occupational
8: Decent Work	the Swedish Work	clear meaning,	accident or suffer
and Economic	Environment	where less is better	from occupational
Growth.	Authority.	than more. Can be	injury.
		followed over time.	

Consumption-based indicator(s):

Share of sales of food products with fair trade certification, from fair trade eligible countries.

Description: The indicator measures the share of sales of food products that are certified according to fair trade, in relation to total sales of food products with origin from fair trade eligible countries.

Indicator:	Share of sales of food products with fair trade certification, from fair trade eligible countries.
Indicator label:	C-2.2.1c
Type according to	
DPSIR:	
Target:	Not available
Data source:	Fair trade: https://fairtrade.net

Indicator justification:

maicaior justification.			
Relevant:	High-quality:	Interpretable:	Useful:
Safe and	Fair trade	Easy to interpret.	The
secure working	certified producers	Share of sales of	certification might
environments are	with employees	food products with	be time demanding
one of the	are required to	fair trade	and producers
essential parts of	comply to Fair	certification has a	might chose not to
the Sustainable	trade standards	clear meaning.	certify. There may
development Goal	regarding social	Furthermore,	be decent working
8: Decent Work	rights and worker	increasing or	conditions also in
and Economic	security.	decreasing has a	situations where
Growth.		clear meaning,	there is no
		where more is better	certification.
		than less. Can be	
		followed over time.	

Extent of child labour.

Description: The indicator measures the extent of child labour in countries from where Sweden imports food products

Indicator:	Extent of child labour
Indicator label:	C-2.2.1d
Type according to	
DPSIR:	
Target:	Not available
Data source:	International Labour Organisation (2021)

Relevant:	High-quality:	Interpretable:	Useful:
A sustainable	The Internatinal	Easy to interpret.	There might be
food system cannot	Labour	Can be followed	countries without
use child labour.	Organization	over time.	surveys on child
No use of child	provides estimates		labour where
labour is essential	on child labour in		imputation
to achieve both	different countries		methods need to
SDG 8 and 16	based on country		be used.
(International	services.		
Labour			
Organization,			
2017)			

Background

A *just, ethical and equitable food system* would be a system with fair working conditions (e.g. Hebinck et al. 2021). The working conditions in Sweden are regulated by the work environment legislations which are not unique to the food system. Wages are determined in negotiations between the worker and employer trade unions. Compliance with those general legislations and agreements between labour market partners is expected as a hygiene factor.

To assess working conditions, we focus here on the risk of being in an occupational accident or of developing disease due to conditions at work. These aspects cover many underlying work environment aspects such as safety in managing machinery and equipment and animals, exposure to harmful chemicals and exposure to negative stress, which are all possible to affect by individual employers. To capture more severe incidence of the neglect of work environment conditions, we also focus on the reporting of serious injuries and incidences, which should all be reported to the Swedish work environment authority.

We also focus on the incidence of unreported salaries in relation to the total number of workers. This indicator captures the extent to which there are workers who are not able to enjoy the social benefits of employment and at least to some extent that the wages are reasonable in relation to the qualifications.

Looking at the consumption side, we suggest to use the share of sales from fair trade certificated producers, from sales of countries eligible for fair trade. The producers under fair trade certification who have employees have to guarantee certain standards regarding social rights and worker security. We also suggest to use extent of child labour in imported food products as an indicator of working conditions. Child labour is unacceptable in a sustainable food system. No child labour is essential for both SDG 8 and 16 (International Labour Organization, 2017).

2.3 Theme: Contribution to cultural values

Food patterns and behaviours are heavily influenced by social traditions, cultures, religious beliefs and social norms. Foods are also central to personal identity. The food systems in themselves also form, uphold or deteriorate cultural values and traditions that we find valuable (HLPE, 2017). Hence, cultural values are also an outcome of food systems that we can monitor. There is an extensive literature related to the study of cultural ecosystem services (Cheng et al., 2019; Milcu et al., 2013)). However, cultural values are multifaceted, complex and subjective and do not easily lend themselves to being captured in a limited set of indicators. Here we include a set of indicators related to aesthetic values, cultural heritage and recreational values. These indicators are only relevant on the territorial level. It could potentially be relevant to include consumption side indicators related to the dietary patterns in Sweden. However, it is difficult to establish such values as dietary patterns and behaviours are constantly evolving and highly varying across populations groups. Therefore, in this first version of the framework, we only include territorial-based indicators for this theme.

2.3.1 Attractive landscapes

Territorial-based indicator(s):

Area of pasture (thousands of ha)

Description: An indicator that captures the aesthetics of agricultural landscapes. Area of pasture is used as a proxy for this although it is only a subset of attractive agricultural landscape types and not all pastures have high aesthetic values.

Indicator:	Area of pasture (thousands of ha)
Indicator label:	T-2.3.1a
Type according to	S
DPSIR:	
Target:	Not available
Data source:	The Swedish Board of Agriculture:
	https://jordbruksverket.se/e-tjanster-databaser-och-
	appar/ovriga-e-tjanster-och-databaser/statistikdatabasen

Relevant:	High-quality:	Interpretable:	Useful:
Landscape	The area of	Easy to interpret	Heavily
aesthetics	pasture	(area of a valuable	influenced by
contribute to human	(betesmark) is	nature type).	policy decisions
well-being. It is	measured yearly by	Increasing or	regarding support
well established	the Swedish Board	decreasing area has	for preserving
that semi-natural	of Agriculture. A	a clear meaning	such areas, and by
grasslands are	large part of this	(more is better).	decisions taken by
highly valued	(although not all)	Measured yearly and	farmers.
nature types for its	can be classified as	can be followed over	
beauty.	semi-natural	time.	
	grasslands with		
How agriculture	high biodiversity		
is performed will	values.		
affect how			
landscapes develop			
and thereby the			
attractiveness of			
landscapes.			

Justification for indicator choice:

Consumption-based indicator(s):

NA

Background

Attractiveness is highly subjective and varies between individuals and cultures. Studies from Sweden however show that people in general appreciate certain types of landscapes; mosaic landscapes, open landscapes, natural pastures, landscape elements such as stone walls and animals in the landscape (Hasund, Kataria and Lagerkvist, 2011; Kumm, 2017). Attractiveness of landscapes is not currently monitored or measured in Sweden. A range of indicators or a composite index would be needed to capture the multiple aspects of attractive aesthetics including for example indicators such as (Karlsson, Tidåker and Röös, 2022):

• 'Landscape variation' defined as the length of edges between different land cover patches represented in the GSD Property Map (block-database from the Swedish Board of Agriculture) divided by the farm's total study area (Karlsson, Tidåker and Röös, 2022). Although the results have been variable and non-linear, the density of the edges between contrasting landscape patches (e.g. field margins and forest edges) is generally also seen as beneficial for aesthetic landscape qualities and related ecosystem services (Dronova, 2017).

- 'Roadside variation' defined as the number of land cover patches intersected by or adjacent (within 25 m) to roads and paths (excluding motorways and railways), divided by the total length of roads within the study area (Karlsson, Tidåker and Röös, 2022). Although results have been variable, measures of landscape diversity generally show positive impacts on the perceived landscape beauty and visual quality (Dramstad et al., 2006; Dronova, 2017) and roads and paths are the primary means by which people move through a landscape.
- 'Accessibility' defined as the fraction of a landscape within 100 m from roads as an indicator for accessibility (also considering population density).
- 'No of visitors' can be captured by tracking e.g. photos on social media or mobility, using tracking of mobile phones, visits to farm stores etc.

Another possible indicator that would be straight-forward to use is the 'Area of seminatural pastures'. The semi-natural pastures are well-known for their aesthetic values and this is already an indicator that is used for the Swedish Environmental Objective "Ett rikt odlingslandskap"¹. Here in this first version of the framework we use this indicator for simplicity². This indicator could be improved by also considering where these areas are located. They would provide a greater value if they are located so that many people can easily appreciate their beauty, e.g. if they are located in more densely populated areas.

The limitation with this indicator is naturally that it only considers semi-natural pastures. However, there are other landscape types and landscape elements that are important for attractive landscapes (Hasund, Kataria and Lagerkvist, 2011; Kumm, 2017). In addition, elements like stone walls, tree alleys and traditional buildings are considered important parts of landscape heritage. Previously (2007-2013) there were payments within the Rural Development Programme for preserving such elements, a sign that these are valuable to society (Frisk and Stadin, 2016). Therefore, an indicator related to such landscape elements monitored based on schemes used in the previous payment system could be an option. However, it can be discussed whether the causal link between food systems and the preservation of these landscape elements is too weak as many of these elements could be preserved independently of how cropping and livestock systems are managed. The payments from society directly to preserving these landscape elements (like in the previous Rural Development Programme) might be more influential in determining how many of them that are preserved, and such payments are (largely) disconnected from food systems. However, some of these elements are indeed influenced by management practices. For example, in more specialized and intensified production systems, elements like e.g. stone walls are removed in such fields to make the fields more efficient to cultivate.

¹ <u>https://www.sverigesmiljomal.se/miljomalen/ett-rikt-odlingslandskap/betesmarker-och-slatterangar/</u>

² In the statistics from the Board of Agriculture the land use type is pasture (betesmark) which includes different types of pastures, varying from those with those with very high biological values to those with low values.

2.3.2. Preservation of food related traditions

Territorial-based indicator(s):

People educate per year in artisan food preparation (no per year)

Description: An indicator capturing how the knowledge in artisan food preparation is upheld. It is measured by the number of people educated per year in such practices.

Indicator:	People educated per year in artisan food preparation (no
	per year)
Indicator label:	T-2.3.2a
Type according to	S
DPSIR:	
Target:	Not available
Data source:	Eldrimner: https://www.eldrimner.com/om-
	eldrimner/31997.hitta mathantverkare.html

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The extent to	Should be	Number of	Outcomes of this
which traditional	straight-forward to	people educated is a	indicator can be
food preparation	gather this	quantitative concept	influenced based on
methods are	information as it	that is easily	the investment and
preserved can be	should be	interpreted.	promotion of these
seen as one	available in		food preparation
important outcome	(needs to be		practices. Also
of how food	investigated		through the extent
systems function.	exactly how)		these foods are used
			in public meals.
As this			
knowledge is not			Challenging to
acquired neither in			set a target.
homes nor in			
public schools, it is			
measured here as			
the number of			
people within			
tertiary levels of			
education			

Livestock from threatened breeds kept (no of animal units per year)

Description: An indicator to capture the extent to which threatened old livestock breeds are preserved. Measured here by aggregating all animals of these breeds into livestock units.

Indicator:	Livestock from threatened breeds kept (no of animal units
	per year)
Indicator label:	T-2.3.2b
Type according to	D
DPSIR:	
Target:	Not available
Data source:	Swedish Board of Agriculture:
	https://jordbruksverket.se/djur/lantbruksdjur-och-
	hastar/husdjursraser-och-avelsorganisationer/husdjursraser

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The traditional	High-quality	Animal units are	Difficult to set
livestock breeds are	statistics on	commonly used to	target.
part of our cultural	number of animals	aggregate smaller	
heritage.	are kept by the	and larger animals.	
	Swedish Board of		
	Agriculture.		

Consumption-based indicator(s):

NA

Background

Our cultural heritage is connected to food in relation to food preparation, eating habits and food production including agricultural systems. These cultural values, an output from food systems just like food, are seldom included in food system sustainability assessments. There are a wide range of possible indicators to include. Here, however, we suggest just two examples of possible indicators to be used as a starting point when discussing this theme more going forward.

The first one relates to artisanal food production which includes food such as breads, cheeses, fruit preserves, cured meats and beverages produced mainly by hand using traditional methods by skilled craftsmen (artisans). These skills were wide-spread in traditional households but have to a large extent been lost due to the modernization of the food system. The preservation of such skills can therefore be seen as an important cultural

value. We suggest here an indicator that measures the number of people that are educated in these practices yearly. Such education is offered in various types of tertiary education (e.g. Eldrimner, <u>https://www.eldrimner.com/</u>).

The current livestock production involves just a few breeds per species that have been bred for high productivity. The second indicator we suggest here relates to the preservation of threatened traditional livestock breeds, as landrace livestock breeds are also part of our cultural heritage. Currently, there are payment schemes in place to support the preservation of a range of different breeds of cattle, sheep, pigs and goats (Jordbruksverket, 2022). Here we suggest that the indicator tracks the total number of these animals kept per year (aggregated into livestock units). The statistics on this is kept by the Swedish Board of Agriculture. This could later be extended to also include e.g. crop landraces (Last et al., 2014).

2.3.3 Recreational values

Territorial-based indicator(s):

Number of farms that provide recreational values

Description: An indicator with the aim to capture the extent to which the food system offers recreational values in terms of farm visits and similar. Measured as the number of farms that provide such services.

Indicator:	Number of farms that provide recreational activities
Indicator label:	T-2.3.3a
Type according to	Р
DPSIR:	
Target:	Not available
Data source:	The Swedish Board of Agriculture, Farm Economics
	Survey (JEU): <u>https://jordbruksverket.se/om-</u>
	jordbruksverket/jordbruksverkets-officiella-
	statistik/jordbruksverkets-statistikrapporter/statistik/2022-02-
	25-jordbruksekonomiska-undersokningen-2020

Justification	for	indicator	choice
Justification	jor	inaicaior	cnoice:

Relevant:	High-quality:	Interpretable:	Useful:
Recreational	The Farm	Easy to interpret.	Difficult to set
values can be an	Economics Survey		a target.
important value	provides high-		
delivered by food	quality data on		
systems depending	farms' economic		
on how these are	activities.		
organized.			

Description: The food system supplies recreational values that go beyond the pleasure of eating foods, which can reconnect people with nature with positive effects on societal wellbeing (Hermes *et al.*, 2018). A part from providing attracting landscapes for nature experiences, some farms provide farm shops, restaurants and cafés and the possibility to stay for longer periods in farmstays. We here suggest the number of farms that provide such services as an indicator of the food system's recreational values. The Farm Economics Survey from the Swedish Board of Agriculture (Swedish Board of Agriculture, 2022) provides data on the economic income from 'Other Gainful Activity' (OGA), which includes incomes from activities such as snow ploughing and tourism. This data can be used to estimate the number of farms that provide recreational values in terms of farm visits etc. Exactly how this indicator will be defined and calculated is still to be decided.

2.3 Theme: Rights of indigenous people

2.3.1 Protect the rights of the Sami people

Territorial-based indicator(s):

Number of reindeer owners in Sweden

Description: An indicator with the aim to capture the extent to which the Sami population can practice traditional reindeer herding. Measured here as the number of reindeer owners.

Indicator:	Number of reindeer owners in Sweden
Indicator label:	T-2.3.1a
Type according to	S
DPSIR:	
Official target:	Too be discussed with the Sami Parliament
"Science-based	Not available
target":	
Data source:	Sami Parliament
	https://www.sametinget.se/english

Ratio of public institutions (schools, elderly care etc.) that offer meals reflecting the rights of indigenous people

Description: An indicator with the aim to capture the extent to which extent the Sami population can consume a culturally appropriate diet.

Indicator:	Ratio of public institutions (schools, elderly care etc.)	
	that offer meals reflecting the rights of indigenous people	
Indicator label:	T-2.3.1b	
Type according to	S	
DPSIR:		
Target:	Not available	
Data source:	Unclear, needs investigation	

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The rights of the	The Sami	Easy to interpret.	To be discussed
Sami people to	Parliament keeps		with the Sami
practice traditional	high quality		Parliament to
keeping of reindeer	statistics on the		which extent these
and eat culturally	number of reindeer		indicators are
appropriate meals	owners (needs to		useful or if other
in public	be double-		indicators would
institutions are	checked).		be more useful.
captured.			
	For T-2.3.4b		
	data availability		
	needs to be		
	investigated.		

Background

This theme involves the recognition and protection of the intellectual property rights of indigenous people according to the United Nations declaration (United Nations, 2008). The indigenous rights include the right to uphold and practice cultural knowledge, including rituals, arts and customs in general. In terms of food systems, indigenous rights include knowledge related to the farming and catching methods, the use of specific seeds/breeds and medicinal plants and their uses. In Sweden, the most important food related practice related to the indigenous Sami population is the keeping of reindeer in the north of Sweden. Reindeer herding is a Sami occupation that is reserved for the Sami. The right to herd reindeer is based on the claim from time immemorial as reindeer management existed before Sweden was formed. There are 4600 owners of reindeers, approximately 1000 reindeers in Sweden (Sametinget, 2022).

Here we suggest two indicators to reflect the indigenous rights of the Sami people; one related to the keeping of reindeer and one to the possibility of eating food reflecting the cultures and traditions of the Sami population in public institutions (schools, elderly homes

etc.). For the first one, we suggest the number of reindeer owners as an indicator as this shows the number of indigenous people involved in this tradition. This more broadly captures the involvement then e.g. the number of reindeer companies or number of reindeer. Regarding the possibility to consume food reflecting Sami culture and traditions, we include an indicator of the ratio of the public institutions that offer such possibilities. This indicator has to be further defined to be useful. These two indicators are tentative suggestions to be discussed and confirmed with the Sami parliament. If possible and relevant, they should also be aligned with indicators related to the rights of indigenous people being developed within the (Naturvårdsverket, www).

2.4 Theme: High animal welfare

The World Organisation for Animal Health (formely OIE) has defined animal welfare as "the physical and mental state of an animal in relation to the conditions in which it lives and dies" (World Organisation for Animal Health, www). Although animal welfare is not explicitly mentioned in the SDGs, working to achieve the SDGs is compatible with working to improve animal welfare (Keeling *et al.*, 2019). Our goal for High animal welfare in Mistra Food Futures is in accordance with the goal of Hebinck et al (2021): "Increase share of animal products with high animal welfare quality standards".

2.4.1. Total welfare index

Territorial-based indicator(s):

Total welfare index for animals in production

Description: Total welfare index for animals in production is an index summarizing the animal welfare of all animals used for the production of animal-sourced food in Sweden. The index includes the number of animals and the severity of the animal welfare issues these animals are exposed to.

Indicator	 Total welfare index for animals in, based on Number of involved animals of different species and animal types (e.g. chickens for slaughter or hens for egg production) These animals' (species') abilities to perceive negative effects Animal welfare assessment value for different production systems, based on Mortality, number of animals dead on farm / total
	- Diseases, number of animals affected by diseases or injuries / total number of animals

Indicator label: Type according to DPSIR:	 Barren environment, number of animals in a barren environment / total number of animals Duration of slaughter process (including time for catching animals, transport of live animals, waiting at slaughter plant and actual slaughter) The calculation of the index is described below the table. T-2.4.1a
Target:	There is no specified Swedish or global official targets for animal welfare. The Swedish board of Agriculture includes three goals in its strategy for 2020-2025 and they cover animal welfare legislation law compliance, development of animal production so that animal welfare, production and competitiveness are increased, and stronger clarity and security in the work for animal protection. Animal welfare is not mentioned in the SDG, but a resolution adopted by the UN Environment Assembly (2022) acknowledges that "animal welfare can contribute to addressing environmental challenges, promoting the One Health approach and achieving the SDG" and notes that "health and welfare of animals, sustainable development and the environment are connected to human health and well-being". The goal is a low index value, which reflects better welfare for animals used for food production in Sweden. The goal is calculated based on the current production volumes from
	different production systems. Lowest possible index value means mortality on farm is zero, all animals are healthy, no animals live in a barren environment and the duration of slaughter process is no more than 10 minutes.
Data source:	The Swedish Board of Agriculture (animal numbers), questionnaire to university staff (animals' ability to perceive negative effects; see below), web pages and reports from the Swedish dairy, beef, pork, chicken, egg, fish and aquaculture industry (mortality, disease, management; see below).

Justification for indicator choice

Relevant:	High-quality:	Interpretable:	Useful:
Ideally, the welfare	A judgement of	The indicator	The SDGs do
value in the index	species' ability to	reflects the animal	not include animal
is calculated	perceive negative	welfare of all	welfare, but the UN
according to The	or positive effects	animals involved in	Environment
Welfare Quality®	of production	Swedish food	Assembly of the
Assessment	systems collected	production. Larger	United Nations
Protocols which	with a	number of animals	Environment
emphasize animal-	questionnaire is	with higher ability to	Programme
based measures.	possible to report	perceive negative	(UNEP, 2022) has
This would be	according to	effects in production	recently
complicated,	standards for	systems with weaker	

· · · · ·		· · · · ·	
expensive and time	survey studies	animal welfare result	acknowledged its
consuming since	(average, rank,	in a higher index	importance.
the assessment is	response ratio etc).	value.	
based on records			The index value
from visits at a	Although the	The goal (a lower	is possible to
representative	four organic	value = less negative	influence through
sample of farms of	principles of	impact on the	the choice of
each production	International	animals) is easy to	species and animal
system.	Federation of	communicate.	type (i.e. food
Furthermore, there	Organic		product).
are only protocols	Agriculture	The index for	
for cattle, pigs,	Movements	production is built in	
chickens and	(IFOAM) do not	the same way as the	
laying hens.	highlight animal	index for	
	welfare, several	consumption. Mean	
High index	studies show that	and standard	
values (i.e. low	many aspects of	deviation of the	
animal welfare)	animal welfare are	indices can be	
due to bad	better in organic	standardised so that	
management are a	than conventional	they are easy to	
non-efficient use of	systems (but not	compare.	
natural resources	all).		
and reduced waste			
generation is part of			
SDG 12 (but the			
number of affected			
animals is mainly			
related to the size			
of the animals)			

Description of index calculation:

The *number of involved animals* is calculated based on the production of animal-sourced food from different species and an average assumed number of animals needed to produce these amounts of food. These numbers also include animals not producing food themselves, e.g. discarded male chickens in egg production and animals dying on farms. We identify standard numbers of animals per amount of food product based on statistics from the Swedish Board of Agriculture.

Animals' cognitive ability is related to the ability to feel pain, fear and discomfort and these abilities are very complicated to study. Species differ in their cognitive ability, but there is a lack of knowledge, especially for arthropods like crayfish and crickets. Scherer et al (2018) used a so called moral value to account for self-awareness in the sustainability assessments of animal products. The aim of this value was to describe "expected intelligence relative to a human being" and it was based on either brain mass, total number of neurons or number of cortical neurons, depending on data availability. For example, the moral value for cattle and pigs was 0.3 as compared to 1 x 10-6 for shrimp. This idea was presented and criticized at the Animal Welfare Science Symposium in Uppsala in June 2022. The estimate of cognitive ability (Scherer et al, 2018) was regarded as too large of a simplification. There are not enough scientific studies on cognitive ability or ability to feel pain, fear and discomfort in all species used for food production. The lack of proof of e.g. blue mussels' ability to feel fear simply means that it has not been studied; it does not mean that it has been proved that blue mussels do not feel fear.

Animals' (species') *ability to perceive negative or positive effects* will be used in the index calculation. Most people would say that for example getting injured or suffocating

has larger negative effects for a bull than for a blue mussel. We will use this intuitive knowledge as a base for the ability value. The relative ability of animals of different species to perceive negative (or positive) effects, i.e. effects of handling, feeding, housing etc, in a production system will be assessed using a questionnaire to staff at the Faculty of Veterinary Medicine and Animal Science at SLU. This 'ability value' is an acceptable simplification as long as the method to achieve it is reported. In the future, when more knowledge on animals' ability to perceive negative effects is available, it can be replaced by a scientifically based value of this ability.

The impact of the Swedish production systems with regard to *animal welfare* is classified into a welfare class, based on data from various open access data bases and so called grey literature presented by the industry. The *animal welfare class* is a combination of

- Mortality, number of animals dead on farm / total number of animals
- Diseases, number of animals affected by diseases or injuries / total number of animals
- Barren environment, number of animals *not* provided with an enriched environment / total number of animals
- Duration of slaughter process (including time for catching animals, transport of live animals, waiting at slaughter plant and actual slaughter)

Mortality and diseases are assumed to be zero for wild animals used for animalsourced food, such as shrimps and game. The availability of data on diseases varies between production systems, but some key diseases for each species will be used as an alternative to all diseased and injured animals. Examples of key diseases are mastitis and leg problems for cattle, leg problems and lung diseases for pigs and bone injuries for poultry.

We will use a simple classification of the environment into barren or enriched. An environment is enriched if at least one of these conditions is fulfilled:

- Organic production system
- On pasture at least 40% of total life time
- Wild animal

and otherwise barren. At least 40% of pasture is based on the Swedish climate where being outdoors during winter is not always associated with high welfare.

A simple classification of duration of slaughter process is used, based on average duration. The range of duration of slaughter given by Scherer et al (2018) was used as a starting point when setting the *slaughter duration classes* given below:

- More than 12 hours = 2
- Between 1 and 12 hours = 1
- Between 10 minutes and 1 hour = 0.5
- No longer than 10 minutes = 0.1

The *welfare class* summarises the three ratios for mortality, diseases and barren environment, and the slaughter duration class.

The index is calculated based on the raw, edible food product, e.g. 1 kg beef (without bones) calculated with the average carcass weight and percent of meat in the carcass, or 1 kg pealed shrimps. A sub-index value is calculated for each animal product (e.g. 1 kg of eggs): *sub-index_{eggs}* = *number of individuals x ability to perceive negative effects x welfare-class*

The total welfare index for production describing our total production of animal-sourced food in Sweden is calculated as the sum of all sub-index values:

Total welfare index for production = $sub-index_{eggs} + sub-index_{beef} + sub-index_{shrimps} + ...$

Consumption-based indicator(s):

Total welfare index for all animals used for consumption

Description: Total welfare index for consumption is an index summarising animal welfare of all animals used for the production of animal-sourced food consumed in Sweden. The index includes proxies for the number of animals and the severity of the animal welfare issues these animals are exposed to.

Indicator	 Total welfare index for consumption, based on Number of involved animals of different species and type (e.g. chickens for slaughter or hens for egg production) These animals' (species') ability to perceive negative effects Animal welfare legislation in the countries where these animals are used for food production Law compliance in these countries
Indicator label:	C-2.4.1b
Type according to DPSIR:	S
Target:	The goal is a low index value, which reflects less animals involved in food production, and better welfare for these animals. The goal is calculated based on the number of animals of different species required to achieve a consumption in line with the Swedish Food Agency recommendations, where all animals come from countries with the best World Animal Protection Index (API).
Data source:	The Swedish Board of Agriculture (animal numbers), questionnaire to university staff (ability to perceive negative effects; see above), World Animal Protection (World Animal Protection Index) and The World Justice Project (Rule of Law Index).

Justification for indicator choice

Relevant:	High-quality:	Interpretable:	Useful:
It would be more	World Animal	The indicator reflects	The SDGs do not
relevant to use	Protection is a 55-year-	the animal welfare of all	include animal welfare.
measurements of	old NGO with offices in	animals involved in our	
animal welfare	14 countries, including	consumption. Larger	Possible to influence
performed on farms	Sweden. Their World	number of animals with	through choice of species
and slaughter plants,	Animal Protection Index	higher ability to perceive	(i.e. food product) and
but there are no data	(API) is well	negative effects, from	import country for food
bases covering all	documented and clearly	countries with a weaker	of animal origin.
welfare issues of all	explained. The 2nd	animal welfare legislation	
animals used for	edition is most recent	and lower law compliance	
producing animal-	(2020).	result in a higher index	
		value. The goal (a lower	

	Ū.	
Project is an	impact on the animals) is	
independent,	easy to communicate.	
multidisciplinary, non-		
profit organization.	The index for	
	consumption is built in the	
The 'ability to	same way as the index for	
perceive-value' is not	production. Mean and	
based on scientific	standard deviation of the	
studies of animals, but	indices can be	
on a scientific study of	standardised so that they	
humans' opinions.	are easy to compare.	
-		
Calculating yield		
(amount of food		
countries is a		
simplification, but by		
e .		
favouring countries with		
at the cost of lower		
animal welfare.		
	Project is an independent, multidisciplinary, non- profit organization. The 'ability to perceive-value' is not based on scientific studies of animals, but on a scientific study of humans' opinions. Calculating yield (amount of food product/animal), assuming Swedish average numbers for all countries is a simplification, but by assuming the same yield for all countries we avoid favouring countries with very high average yields at the cost of lower	Project is an independent, multidisciplinary, non- profit organization. The 'ability to perceive-value' is not based on scientific studies of animals, but on a scientific study of humans' opinions. Calculating yield (amount of food product/animal), assuming Swedish average numbers for all countries is a simplification, but by assuming the same yield for all countries we avoid favouring countries with very high average yields at the cost of lower

Description of index calculation

The *number of involved animals* are calculated based on the consumption of food from different species and an average assumed number of animals needed to produce these amounts of food. These numbers also include animals not producing food themselves, e.g. discarded male chickens in egg production. The standard number of animals per amount of food product based on Swedish animal production will be identified and these numbers will be applied to all countries that we import animal-sourced food from. Thus, we assume that the production in countries exporting animal-sourced food to Sweden is similar to the Swedish production when it comes to average production levels, weight at slaughter etc.

The *ability to perceive negative effects* is related to the ability to feel pain, fear and discomfort (see background to Production indicator above).

The *animal welfare legislation* of different countries is classified by an international NGO called World Animal Protection, in a World Animal Protection Index (API). The API measures the recognition of animal sentience and prohibition of animal suffering, support for international animal welfare standards, presence of animal welfare legislation, establishment of supportive government bodies and support for international animal welfare standards. The 50 countries included are large producers of beef, poultry, pork, sheep, milk and eggs. We assume that the animal welfare legislation as classified in the API is a good enough indicator for all species in the country. The API values range from A (best) to G (worst). For example, Sweden is classified as B and Thailand as D.

The API does not describe *law compliance*. The API will be adjusted based on an index describing the general law compliance in different countries, and we use the World Justice Project Rule of Law Index (WJPLI) for this. The factors of the WJPLI include constraints on government powers, absence of corruption, open government, fundamental rights, order and security, regulatory enforcement, civil justice and criminal justice. The WJPLI can range from 0 to 1. For example, Sweden has a WJPLI value of 0.86 as compared to 0.90

for Finland and 0.50 for Thailand. The API scale is transformed to a scale from 1 (A, best) to 7 (G, worst). Thereafter the API value is adjusted for law compliance so that a lower compliance gives a higher API-adjusted value.

API-adjusted = API x 1/WJPLI

The index is calculated based on the raw, edible food product, e.g. 1 kg beef (without bones) calculated with the average carcass weight and percent of meat in carcass or 1 kg pealed shrimps.

A sub-index value is calculated for each animal product from each country (e.g. 1 kg of eggs from Finland):

 $sub-index_{finnish-eggs} = number of individuals x ability to perceive negative effects x API-adjusted$

The welfare index value for the consumption of each product is calculated based on the consumed sum of this product from different origins:

product-index_{eggs} = amount of Swedish eggs x sub-index for Swedish eggs + amount of Finnish eggs x sub-index for Finnish eggs + ...

The total welfare index for consumption describing our total consumption of animal products is calculated as the sum of all product index values:

Total welfare index for consumption = product-index_{eggs} + product-index_{beef} + product-index_{shrimps} + ...

General background

A large part of the Swedish food consumption consists of food from animals in agriculture and aquaculture and a minor part consists of food from wild animals. The welfare of all these animals should not be ignored. Animal welfare is important for many humans. In the Eurobarometer survey (2021), 82% of the respondents agree to the statement "in general, the welfare of farmed animals should be better protected than it is now". In the Rural Development Programmes of the EU's Common Agricultural Policy, animal welfare is a specific measure. According to the EU's Farm to Fork Strategy (2020) "Better animal welfare improves animal health and food quality, reduces the need for medication and can help preserve biodiversity. This illustrates that animal welfare (as AMR, see 1.2.2) is a One Health issue.

In this framework, animal welfare includes animal health and other welfare aspects and other ethical aspects (i.e. the number of involved animal lives). Global data on animal health are, however, not possible to find and therefore this assessment of consumption is based on national animal welfare legislation.

The animal welfare assessments should include not only the production site but also the transport and slaughter, i.e. the complete life cycle. Many animals move between farms during their lifetime. Young surplus calves from dairy farms are e.g. often transported to specialised beef production farms where they are raised until slaughter. The production on a farm can also be dependent on animals outside the farm, e.g. bulls producing semen for artificial insemination. Ideally, the number of affected animals, the duration of the distress

and the severity (intensity) of the distress should be taken into account in an animal welfare assessment expressed per functional unit. Keeping in mind that consumption may change to a larger proportion of protein from insects, the animals' cognitive capacity (sentience) is also relevant to include in the assessment. Based on neurons and brain mass, Scherer et al (2018) give a higher so called 'moral value' to, for example, a pig than a mealworm. There is, however, a lack of data on cognitive ability of all species used for food production. Furthermore, the scientific proofs for the association between the number of neurons or weight of brain mass and the cognitive ability are also scarce.

The Farm Animal Welfare Council (1993) defined five freedoms that need to be provided to achieve high animal welfare: (1) freedom from thirst, hunger and malnutrition; (2) freedom from discomfort; (3) freedom from pain, injury and disease; (4) freedom to express normal behaviour; and (5) freedom from fear and distress. Animal health is related to several of these freedoms. Disease is an opposite of health, health problems can also cause pain, fear, distress and inability to express normal behaviour and malnutrition can decrease health. It should be noted that health problems include both diseases (infectious or not) and injuries. Even though health is included in the animal welfare concept, the terms "animal health and welfare" and "animal welfare and health" are very common in the literature. There are animal welfare issues that go beyond health, for example the freedom to express normal behaviour.

The World Organisation for Animal Health (OIE) has in their Terrestrial Code defined animal welfare as "the physical and mental state of an animal in relation to the conditions in which it lives and dies." This definition is relevant also for aquatic animals. From OIE global animal welfare strategy (2017): "Animal welfare is closely linked to animal health, the health and wellbeing of people, and the sustainability of socio-economic and ecological systems. Animal welfare is a complex, multifaceted, international and domestic public policy issue with scientific, ethical, economic, legal, religious and cultural dimensions plus important trade policy implications. It is a responsibility that must be shared between governments, communities, the people who own, care for and use animals, civil society, educational institutions, veterinarians and scientists." Animal welfare refers to *the state* of the animal. The treatment that an animal receives, i.e. animal care, animal husbandry, and humane slaughter or killing, influences this state and causes low or high animal welfare.

The animal welfare law is more or less strong in different countries and some countries have no legislation dedicated to animal welfare. All the EU member states must fulfill the EU's animal welfare law, but countries can have more stringent national rules. The EU's 'Treaty on the Functioning of the European Union' recognizes that animals are sentient beings. Article 13 of Title II states that "In formulating and implementing the Union's agriculture, fisheries, transport, internal market, research and technological development and space policies, the Union and the Member States shall, since animals are sentient beings, pay full regard to the welfare requirements of animals, while respecting the legislative or administrative provisions and customs of the EU countries relating in particular to religious rites, cultural traditions and regional heritage."

Neither Béné et al (2019), nor Fanzo et al (2021) mention animals used for food production in their articles about food system sustainability and animals are not regarded as stakeholders in the UNEP's (UNEP 2020) guidelines for social LCA. Animals used for food production are almost absent in the UN's SDGs, in spite of their positive and negative impacts on the fulfillment of many of the goals. Hebinck et al (2021) and Chaudhary, Gustafson and Mathys, 2018 (2018) both include animal welfare in the sustainability assessments of food systems. In Hebinck's Sustainability Compass (2021), the sustainability dimension is "Increase share of animal products with high animal welfare quality standards" and suggested progress indicators are "share of certified organic products sold" and share of animal welfare certified animal products. Chaudhary et al (2018) use the animal protection index from the World Animal Protection Organisation as an indicator of the indicator Animal health and welfare within the metric Sociocultural wellbeing.

High animal welfare is important for an ethically justified animal production but there are ethical questions that go beyond welfare. An ethical aspect that goes beyond animal welfare is the number of animal lives (i.e. the number of affected individuals) behind the food consumption. A hundred chickens have to be slaughtered to produce the same amount of meat as one young bull. This ethical aspect is included in our work. The right to use animals at all – for any purpose – is an ethical question that we have not included in our work; we assume that humans have the right to use animals for food production.

3. FLOOR: Clean and healthy planet

A clean and healthy planet is fundamental for life and thus a prerequisite for sustainable food systems. At the same time, current food systems cause resource depletion, biodiversity loss, pollution of air and water as well as climate change (Willett et al., 2019). Environmental indicators are, in general, well represented in the existing food system sustainability frameworks (e.g. Hebinck et al., 2021). Here we used the same four themes (areas of concerns) as Hebinck et al. (2021): Climate stabilisation, biodiversity conservation, preservation of natural resources and clean air and water. Our point of departure was the performance indicators included in the framework by Hebinck et al (2021) but we made some adjustments to the indicators to increase the indicators relevance in a Swedish context and the data available. We also added the theme 'Manage soils and water'. 3.1 Theme: Climate stabilization.

3.1 Theme: Climate stabilization

A stable climate is crucial for safeguarding human welfare and the conservation of natural ecosystems. Already, with global mean temperatures having risen by just over one degree Celsius over pre-industrial level, we see "*widespread, pervasive impacts to ecosystems, people, settlements, and infrastructure*" due to more frequent and intense weather and climate extremes, such as droughts, heavy precipitation events, wildfires, coral reef bleaching and heatwaves (Pörtner et al., 2022b). To limit future negative impacts of climate change, and reduce the risk of catastrophic impacts, the global community has pledged to limit global warming to below 2 degrees, aiming to keep temperature rise close to a maximum of 1.5 degrees (UNFCCC, 2015). Doing so will require rapid and deep cuts in greenhouse gas emissions across countries and sectors, including from food systems that currently account for roughly a third of all the greenhouse gas emissions.

3.1.1 Greenhouse gas emissions

Territorial-based indicator(s):

Greenhouse gas emissions, separately per gas (in Mt) and in total (in $MtCO_2$ -equivalents ($MtCO_2e$), weighted using the GWP100-metric)

Description: Total territorial greenhouse gas emissions from the Swedish food production (primary production and domestically produced agricultural inputs, land use and land-use change and downstream emissions in transport and processing). This means that this indicator includes all territorial emissions from the Swedish food production (primary production, processing and transport), regardless of where the food produced is ultimately consumed.

Indicator:	Greenhouse gas emissions, separately per gas (in Mt) and in total (in MtCO ₂ -equivalents (MtCO ₂ e), weighted using the GWP100-metric).
Indicator label:	T - 3.1.1a
Type according to	Pressure (individual emissions), Impact (aggregated
DPSIR:	using GWP)
Target:	Not available, but should be below 10.7 MtCO ₂ e 2045
	(15% of emissions in 1990), which is the target for total
	territorial greenhouse gas emissions, but there is no official
	target for the share of this emission budget available for the
	food system (or agricultural sector).
Data source:	Statistics Sweden (for agricultural production and land-
	use change); data on downstream emissions are currently not
	available from official statistics, but can be estimated using
	the PRINCE methodology (see Cederberg et al. 2019 for
	details).

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Climate change	The methods for	Greenhouse gas	Although there
is one of the major	calculating territorial	emissions in carbon	is no current
environmental	emissions in primary	dioxide equivalents	breakdown of the
challenges facing	production are well-	are a well-	Swedish territorial
humanity.	established and	established	emissions target
	follow international	indicator of	for 2045, such a
	guidelines	contributions to	decision will
	(IPCC/UNFCCC).	climate change.	ultimately have to
	For the additional		be made
	emission sources		politically, and
	suggested to be		this indicator can
	included here, there		also help inform
	are also well-		that discussion.
	established		
	methodologies		
	(multi-regional		
	input-output		
	models).		

Consumption-based indicator(s):

Greenhouse gas emissions, separately per gas (in Mt) and in total (in $MtCO_2$ -equivalents, weighted using the GWP100-metric)

Description: Total greenhouse gas emissions from Swedish food consumption. This includes all of the emissions due to Swedish food consumption (in primary production, processing and transport), regardless of where in the world these emissions occur.

Indicator:	Greenhouse gas emissions, separately per gas (in Mt) and in total (in MtCO ₂ -equivalents, weighted using the GWP100-metric).
Indicator label:	C - 3.1.1b
Type according to	Pressure (individual emissions), Impact (aggregated
DPSIR:	using GWP)
Target:	Around 5 MtCO ₂ e, based on a total emission budget for agriculture of 5 GtCO ₂ e from EAT- <i>Lancet</i> and equal per- capita emissions globally (Swedish population 10 million, global 10 billion, by mid-century), following Moberg et al. (2020)
Data source:	SCB / EXIOBASE (Stadler et al., 2018) (for fossil CO ₂ , CH ₄ & N ₂ O), plus (Pendrill <i>et al.</i> , 2022)(for CO ₂ from land- use change)

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Climate change	The methods	Greenhouse gas	A consumption-
is one of the major	for estimating total	emissions in carbon	based greenhouse
environmental	consumption-based	dioxide equivalents	gas target for
challenges facing	greenhouse gas	are a well-	Sweden is
humanity.	emissions (multi-	established indicator	currently being
	regional input-	of contributions to	discussed in a
	output modelling)	climate change.	parliamentary
	are well-		committee, and
	established. There		having an indicator
	are challenges in		of food-related
	extracting food-		emissions can help
	related emissions		inform a target-
	from these models		setting process.
	(due to the sectoral		
	composition) as		
	well as in		

underlying data	
(e.g., land-use	
change emissions),	
but the results are	
still expected to be	
robust and can be	
cross-checked with	
alternative	
estimation methods	
(based on life-	
cycle assessment	
data).	

Background

Our food systems are key drivers of climate change, with a total of greenhouse gas emissions estimated to be around 14-18 GtCO₂e per year (billion tons of carbon dioxide-equivalents per year; Crippa et al., 2021; Poore and Nemecek, 2018; Vermeulen, Campbell and Ingram, 2012). This constitutes around a third of the total global anthropogenic greenhouse gas emissions, which implies that unless we reduce food system emissions, we will not be able to meet the climate targets agreed upon in the Paris Agreement (Clark *et al.*, 2020).

The Swedish territorial emissions from agriculture amounted to just under 7 MtCO₂-eq in 2020, constituting 15% of the total territorial greenhouse gas emissions (Naturvårdsverket, 2022). However, in accordance with the UNFCCC accounting and reporting framework, this estimate includes only parts of the emissions from agricultural production, namely methane (CH₄) from ruminants (42%) and manure (4%), and nitrous oxide (N₂O) emissions from manure (5%), nitrous oxide from agricultural soils (47%), and carbon dioxide from lime application (2%). It thus omits wider food production emissions, from the production of inputs such as mineral fertilizers (though most of these emissions occur outside Swedish borders), from energy use in production (i.e., agricultural machinery), transport, processing etc., as well as emissions from land-use and land-use change.

While whole food system emissions are not easily estimated from official statistics (e.g., as reported to the UNFCCC), because they fall under other sectors (e.g., energy and transport), they can be estimated using economic input-output models. This is done by Cederberg et al. (2019), based on data from the multi-regional input-output model EXIOBASE (Stadler et al. 2018). They estimate that in 2011, territorial fossil CO₂ emissions linked to the Swedish food consumption amounted to 1.6 MtCO₂. This estimate includes all territorial emissions across Swedish supply-chains, from primary production, transport and processing, but excludes emissions for food products being exported (though

these emissions can also be estimated from the model used), and is thus an underestimate of the actual territorial emissions from fossil fuel use in Swedish food supply-chains. Similarly, the Swedish Board of Agriculture estimates that the territorial CO₂ emissions from agricultural machinery and premises amounted to 0.7 MtCO₂ in 2016 (Markensten et al., 2018). This estimate, however, includes also premises for the forestry sector, but excludes downstream processing and transport emissions. In addition to these fossil CO₂ emissions, the land-use change emissions due to the drainage of organic (peat) soils for agricultural production (croplands and peatlands) are estimated to be around 3 MtCO₂e per year (Statistics Sweden, 2022b).

This implies that although at the moment there is no comprehensive measurement or monitoring of emissions from Swedish production and supply chains, by compiling data from different sources, they can be estimated to amount to at least 12 MtCO₂e per year (i.e., the sum of estimates from agricultural production, land-use change, and wider food system processes given above). This estimate can be related to Sweden's overall target of reducing territorial greenhouse gas emissions by at least 85% in the period 1990-2045 (emissions should be net-zero by 2045, but 15% of 1990 emissions can be compensated by "complementary measures", such as carbon sequestration or offsetting), which translates to an emission budget of 10.7 MtCO₂e in 2045. While there are no indications of the share of this budget that can be claimed by the food system, it is still smaller than the current total emissions from the Swedish food production, processing, transport and retailing, estimated to >12 MtCO₂e per year here, implying a need for emission reductions.

This estimate of the total territorial emissions from the Swedish food system is still substantially lower than estimates of the total emissions from Swedish food consumption (i.e., total food system emissions, inside and outside Swedish borders linked to Swedish consumption), at around 20 MtCO₂e (Cederberg et al., 2019; Moberg et al. 2020), which is due the large share of imports in Swedish food consumption. Note, also, that these estimates do not include emissions from drained peatlands in Sweden (though the land-use change emissions, from deforestation and peatland-drainage in the tropics are included). Adding the estimates of these emissions would thus raise the consumption-based emissions somewhat (though not by the full 3 MtCO₂e per year given above, as some of these emissions are linked to the agricultural production that is exported).

While there have been recent steps to formulate consumption-based emission targets for Sweden (Miljömålsberedningen 2022), no concrete targets for food consumption have been proposed. However, the EAT-*Lancet* commission (Willett et al., 2019) proposes an emission boundary for the global food systems of 5 GtCO₂e, which—if distributed equally per capita—would translate to a Swedish target of around 6 MtCO₂e (assuming that Sweden's population constitute 10 million out of a global population of 10 billion in 2050), indicating a need to drastically reduce the emissions associated with Swedish food consumption.

Finally, it is worth noting that a large share of the food system's greenhouse gas emissions (nationally and globally) is in the form of CH_4 and N_2O . Contrary to CO_2 emissions, which need to be reduced to zero if the climate is to be stabilised, CH_4 and N_2O emissions are eventually completely broken down and removed from the atmosphere, implying that some emissions of these gases can be compatible with climate stabilisation (more so for CH_4 , which has a much shorter lifetime than N_2O) (Pires *et al.*, 2021). This has led to calls for formulating targets for short-lived (e.g., CH_4) and long-lived (e.g., CO_2) greenhouse gas emissions separately, rather than using the Global Warming Potential (GWP) metric to aggregate all gases into CO_2e , which is the current practice in climate policy (Allen et al. 2022).

It is thus reasonable to have a target for decarbonising the Swedish food system (i.e., reducing CO_2 emissions to zero), as that is necessary for climate stabilisation. Aiming for net-zero emissions measured in CO_2e , however, would imply that emissions of CH_4 and N_2O (which are difficult to completely mitigate, especially N_2O) would need to be compensated with carbon removal (or complementary measures if allowed). This would lead to decreasing temperatures in the long term.

However, one should also consider the fact that all CH_4 and N_2O emissions (even when stabilised) add additional warming compared to if they would not have been emitted. In terms of reaching global temperature targets, methane emitted around the time when global temperatures are stabilising (at 1.5 or 2 degrees), are highly influential on the final temperatures. The IPCC scenarios for pathways to stay below these climate targets therefore all include large reductions (50-60%) in methane emissions (Masson-Delmotte et al., 2021). As the current global average temperature increase (approx. 1.1) is already close to the climate target of 1.5 degrees, reductions in methane emissions are becoming increasingly important.

Based on this we suggest monitoring greenhouse gas emissions both separately, and aggregated into CO_2e using GWP100 for comparison with current policy. This argument holds both for territorial and consumption-based targets, as it does not matter where in the world the CO_2 , CH_4 or N_2O is emitted.

3.2 Theme: Biodiversity conservation

Conserving Earths biodiversity and ecosystems is fundamental to human survival. Without the ecological processes that organisms maintain in both terrestrial and aquatic ecosystems, there will be no utilisation of resources from these. Without the services that biodiversity offers (provisioning, regulating and supporting) agriculture or aquaculture cannot persist (IPBES, 2019). Wild diversity is also the base from which domestic diversity, the animals we rear and the plants we grow, are coming and being developed from (Dempewolf et al., 2017). The impacts of agri- and aquaculture on natural habitats are extreme and includes habitat loss and destruction (e.g., from converting old grassland fragments into crop fields

and damaging sea floors from trawling), overharvesting of resources (e.g., fishing) and the following reduction of species (Tilman et al., 2017; IPBES 2019).

Domesticated plants and animals form the foundation of agriculture, and present in themselves the ultimate limits of the nutritional and energetic values that can be derived from agricultural production. The past decades have seen a rapid decrease of genetic diversity in domestic species which has been combined with a low interest and understanding of the value of this diversity (Johns et al. 2013; Leroy et al. 2018). With large environmental changes now affecting agriculture the capacity of domestic species to dela with these changes are becoming more and more important.

3.2.1 Terrestrial biodiversity

Territorial-based indicator(s):

Pollinator abundance and diversity

Description: Presence and abundance of pollinator species in surveyed locations in Sweden.

Indicator:	Pollinator abundance and diversity
Indicator label:	T - 3.2.1.a
Type according to DPSIR:	S
Target:	'The decline of pollinators is reversed' using year 2000 as a
	reference year, from the EU biodiversity strategy (European
	Commission, 2020a)
Data source:	National data exist from the NILS (Nationella Inventeringar av
	Landskapet i Sverige) program https://www.slu.se/centrumbildningar-
	och-projekt/nils/.
	Nevertheless, this data is restricted to a set of habitats, which
	limits its overall usefulness. A new national pollinator survey
	program focused on agricultural landscapes is planned to start
	https://www.slu.se/centrumbildningar-och-projekt/nils/

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Pollinators are	For the	Easy to interpret	Very useful
heavily affected by	territorial part there	where data is	where data exists.
agriculture. The	is high quality data	available. Indexes	Pollinators (and
reasons are several	for some	are calculated using	their services) are
and include a	pollinators from	good quality data.	known by many
reduction of the	the NILS		(farmers as well as

amount and	(Nationella	the public) and
diversity of	Inventeringar av	their importance
flowering plants	Landskapet i	have been
which are used as a	Sverige) program,	highlighted the last
food resource, as	but this does not	few years.
well as places to	cover the whole	
reproduce. The use	agricultural	
of pesticides also	landscape. A	
affects species	survey program	
negatively.	focused on	
	pollinators in the	
	agricultural	
	landscape is on its	
	way and will likely	
	be very useful.	

Farmland birds index

Description: Index of farmland birds. This indicator is a composite index that measures the rate of the change in the relative abundance of common bird species at selected sites.

Indicator:	Farmland birds index
Indicator label:	T – 3.2.1.b
Type according to DPSIR:	S
Target:	'Species show no deterioration in conservation trend and status' using year 2000 as reference year, from the EU biodiversity strategy (European Commission, 2020a)
Data source:	Lund University, fågeltaxeringen https://www.fageltaxering.lu.se

Justification	for	indicator	choice:
0 110119100111011	<i>Jc.</i>		0.101001

Relevant:	High-quality:	Interpretable:	Useful:
Farmland birds	Farmland bird	Easy to interpret	Farmlands
are decreasing in	population trends	and well used	birds are
numbers due to the	are available for the	index.	considered good
intensification of	territorial area via		indicators for the
agricultural land.	'Fågeltaxeringen'		overall state of
There are different	Lund University.		biodiversity,
reasons for this:			known to many,
land cover types			farmers care about

that they need for food, shelter etc. are removed and		them and they are well correlated to how the landscape
thereby different		is used.
resources are		
strongly reduced		
or gone. Pesticide		
use, which reduce		
insect abundance,		
means less food		
for insect eating		
birds.		

Area of semi-natural grassland (ha)

Description: Area of semi-natural grasslands.

Indicator:	Area of semi-natural grasslands (ha).
Indicator label:	T - 3.2.1.c
Type according to DPSIR:	S
Target:	Not available
Data source:	Digital maps, e.g., National land cover database (NMD), https://jordbruksverket.se/e-tjanster-databaser-och-appar/e-
	tjanster-och-databaser-stod/kartor-och-gis, TUVA
	https://jordbruksverket.se/e-tjanster-databaser-och-appar/e-
	tjanster-och-databaser-stod/tuva,
	https://jordbruksverket.se/om-
	jordbruksverket/jordbruksverkets-officiella-
	statistik/jordbruksverkets-statistikrapporter/statistik/2021-02-
	03-jordbruksmarkens-anvandning-2020slutlig-statistik#h-
	Spannmal20002020,
	https://www.lantmateriet.se/sv/Kartor-och-geografisk-
	information/geodataprodukter/produktlista/

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
These are habitats	There are very	Data on land cover	The extent of
in agricultural	good data in Sweden	of semi-natural	natural habitats gives
landscapes that	from digital maps.	grasslands or similar	very useful
harbour native flora	These data have to be		information on the

and fauna and have	collected from maps	habitats are very easy	base for biodiversity in
withstood agricultural	and adapted.	to interpret.	the landscape and
expansion. Often they			species potential to
are very species rich			remain in viable
and some have			populations. Index
developed historically			would be very useful.
with low-intensity			
traditional use. In			
these habitats species			
live and can move out			
into the more			
intensively used areas			
that surrounds them.			

Area of small biotopes (ha)

Description: Area of small biotopes. The heterogeneity of landscapes can be measured by calculating the area of small biotopes in the landscape using data from Swedish land cover databases.

Indicator:	Area of small biotopes (ha).
Indicator label:	T - 3.2.1.d
Type according to	S
DPSIR:	
Target:	At least 10% of agricultural area is under high-diversity landscape
	features' from the EU biodiversity strategy (EC, 2020a)
Data source:	Digital maps, e.g. National land cover database (NMD),
	https://jordbruksverket.se/e-tjanster-databaser-och-appar/e-tjanster-
	och-databaser-stod/kartor-och-gis, TUVA https://jordbruksverket.se/e-
	tjanster-databaser-och-appar/e-tjanster-och-databaser-stod/tuva,
	https://jordbruksverket.se/om-jordbruksverket/jordbruksverkets-
	officiella-statistik/jordbruksverkets-statistikrapporter/statistik/2021-02-
	03-jordbruksmarkens-anvandning-2020slutlig-statistik#h-
	<u>Spannmal20002020</u> ,
	https://www.lantmateriet.se/sv/Kartor-och-geografisk-
	information/geodataprodukter/produktlista/

Relevant:	High-quality:	Interpretable:	Useful:
These are habitats	There are very	Data on land cover	The extent of small
in agricultural	good data in Sweden	of small biotopes	natural biotopes gives
landscapes that	from digital maps.	habitats are very easy	very useful
harbour native flora	These data have to be	to interpret.	information on the
and fauna and have	collected from maps.		base for biodiversity in
withstood agricultural			the landscape and
expansion and			species potential to
intensification in terms			remain in viable
of removal. They can			populations. This data
still be very affected			would be very useful.
by pesticides and by			
being isolated from			
other natural habitats.			
In these habitats and			
patches species can			
live and move out into			
the more intensively			
used areas that			
surrounds them.			

Justification for indicator choice:

Consumption-based indicator(s):

Total area of agricultural and used per year (Mha)

Description: The total amount of agricultural land (cropland and pasture) that is needed to produce the food consumed yearly in Sweden.

Indicator:	Area of total agricultural land used per year (Mha)
Indicator label:	C – 3.2.1.e
Type according to DPSIR:	Р
Target:	For cropland, cropland use boundary according to EAT- <i>Lancet:</i> 1.3 Mha year ⁻¹ For pastures, according to definition in Resare Sahlin, <i>et al.</i> , (2023)
Data source:	Can be calculated based on data on the yearly food consumption from Statistics Sweden and the yield levels from the Swedish Board of Agriculture for Swedish produce and FAO for imported foods, see Moberg et al. (2020). Or from physical-based trade models (Kastner et al., 2012) or from multi-regional input-output (MRIO) models (Stadler et al., 2018).

Relevant:	High-quality:	Interpretable:	Useful:
The expansion	For cropland	Easy and	Lacks official
of agricultural land	rather	intuitive to interpret.	policy goals.
is a major driver of	straightforward to	Quantitative.	Possible to
biodiversity loss.	calculate based on		influence through
The use of	the commodities		changes in diet,
agricultural land is	needed to produce		reduced waste and
directly related to	the food in the diet		higher yields.
food consumption.	based on the yield		Threshold
Land use tightly	data which is		available through
follows the types	available with		the EAT-Lancet
of food	reasonable accuracy		for cropland and
commodities in	for crops. For		through the
diets so observing	pasture there are		definition of
change in this	considerable		sustainable pasture
indicator when	uncertainties,		use in (Resare
diets change is	however.		Sahlin, et al.,
clear. The indicator	Land use is a		2023)
is coarse in the	well-established		
sense that it does	indicator used in		
not capture how	many studies (Jones		
land is used, which	et al., 2016).		
heavily affects			
biodiversity			
outcomes.			
However, the total			
use of agricultural			
land is a clear			
indicator of the			
pressure that a			
certain food			
consumption			
pattern involves.			

Justification for indicator choice:

Extinctions per million species per year (E/MSY)

Description: Estimation of the extinction rate from Swedish food consumption.

Indicator:	Extinctions per million species year (E/MSY)
Indicator label:	C – 3.2.1.f
Type according to	Impact
DPSIR:	
Target:	Extinction rate boundary according to EAT-Lancet: 1.4
	$\times 10^{-9}$ E/MSY per capita
Data source:	Calculated based on the total use of agricultural land (C
	- 3.2.1.a) and factors in Chaudhary & Brooks (2018), see
	Moberg et al. (2020)

<i>Justification for indicator choice:</i>	Justification	for	indicator	choice:
--	----------------------	-----	-----------	---------

Relevant:	High-quality:	Interpretable:	Useful:
This indicator	The method by	This method is	Adds an
gives a coarse	Chaudhary &	coarse but provides	additional layer of
estimation of the	Brooks (2018) used	a way to compare	information than
number of species	to assess the impact	biodiversity impacts	just using the total
affected by the	on biodiversity	across space and	agricultural land.
land use as defined	from land use and	time. Quantitative.	
in C – 3.2.1.a by	relating it to	Results change	
weighting in how	different food	depending on diet	
the richness of five	products, is the	composition (e.g.	
taxa are affected	method	amount of meat	
by the use of land.	recommended by	which reflects total	
The method e.g.	the UNEP/SETAC	use of land, and	
captures if	(Koellner et al.,	amount of products	
consumption is	2013).	from regions with	
high of products		high biodiversity).	
from tropical			
regions with high			
endemic			
biodiversity.			

The expansion and intensification of agriculture cause major declines in biodiversity and the ecosystem services that it provides, and these negative effects are estimated to increase with a growing global population (Laurance, Sayer and Cassman, 2014; IPBES 2019). The reasons for the declines are multifold and include habitat destruction (e.g., from changing natural habitats to pastures), habitat degradation (e.g., from use of pesticides and other chemicals), and fragmentation of natural habitats. At the same time as agriculture is a major cause of biodiversity decline and extinctions globally, it is dependent on the ecosystem

services that this diversity provides, such as soil nutrient cycling and pollination (Vanbergen et al., 2020).

The importance of and dependence on pollinators for agricultural production cannot be overstated (Aizen et al., 2019). At the same time, agricultural practises negatively affect pollinators and in this group many species are declining, and some are threatened (Powney et al., 2019; Raven and Wagner, 2021). Data to estimate abundance and diversity of pollinators exists for limited habitats in Sweden (e.g., Fjärils & humleinventeringen, NILS, https://www.slu.se/institutioner/skoglig-resurshushallning/miljoanalys/fhin/). For some other countries (e.g., the UK) data on pollinators are very good, but for others information is limited. There is currently a new survey program focused on pollinators starting in Sweden (Aguilera Nuñez et al. 2022) that likely will be very useful for monitoring how agriculture affects the biodiversity of pollinators. An index on the diversity and abundance of pollinators (indicator 3.2.1a) would be very useful and is important, but it is still unclear how the current available information on pollinators can be used. There is potential to use data and knowledge collected in different research projects, but this data is not compiled in a way that is useful for assessing food production's impact on biodiversity.

Farmland birds are an important part of the biodiversity in agricultural landscapes. They are dependent on the resources in these systems and therefore respond with changes in diversity and abundance depending on what is grown and how it is grown. Surveys of bird species have been carried out in Sweden and other countries for a very long time (Moussy et al., 2022).For many countries, there are annual follow-ups on the state of birds in different types of systems, where the agricultural system is one (Green, Haas and Lindström, 2022; Harris et al., 2021). The Farmland Birds Index (Indicator 3.2.1b) has been widely used in several countries.

There are no precise national targets for the preservation of pollinators and farmland birds. The Swedish environmental objectives 'A varied agricultural landscape' includes the general targets: 1) habitats and species associated with the agricultural landscape have a favourable conservation status and sufficient genetic variation within and between populations, 2) threatened species and natural environments have recovered. Therefore, the targets from the EU biodiversity strategy 'The decline of pollinators is reversed' and 'Species show no deterioration in conservation trend and status', using year 2000 as a reference year, are used (European Commission, 2020a).

Biodiversity can also be estimated indirectly by measuring the remaining extent of habitats that species need to survive. For this, data on different types of land cover (natural habitats remaining) and data that capture the heterogeneity of the landscape can be used. The latter is important as agricultural activities not only remove natural habitats, but it also fragments the landscape so that the remaining habitats become isolated and the organisms living there (both plants and animals) are more likely to go extinct. This is due to that both their place to live gets physically smaller, but also because they have trouble to move between and colonize the remaining fragments. By maintaining heterogeneity in

landscapes, there is an increased likelihood that the organisms inhabiting these can survive, currently no goal or index is developed for this.

Semi-natural grasslands is a habitat important for many species in the agricultural landscape and besides having a high conservation value, grasslands are also important contributors to ecosystem services (Bengtsson et al., 2019). The total area of semi-natural grasslands (all sub-types combined and here we use the Swedish terms 'ängs- och betesmark') needed in Sweden for a favourable conservation status can be estimated to be approximately 1.22 Mha. This number is estimated using the data from Eide et al., (2014) and Wallander et al., (2019). The area of semi-natural grasslands can be gathered from statistics and digital maps for Sweden.

As for assessing the impacts on biodiversity from the Swedish food consumption, indicators are needed that can capture impacts consistently across products and countries. By coupling the per kg of product impacts with the yearly consumed quantities of food, the biodiversity impact from Swedish consumption can be assessed in terms of potential species extinctions, although uncertainties are considerable (Moberg, Karlsson Potter, Wood, Hansson, and Röös (2020). Methods for including impacts of food production on biodiversity in LCA are less consolidated in comparison to, e.g., the impact category of climate change. The United Nations Environment Program - Society of Environmental Toxicology and Chemistry (UNEP-SETAC) guidelines suggest a method for including land use impacts on biodiversity in LCA that includes impacts due to occupation and transformation of land (Koellner *et al.*, 2013).

Land transformation—e.g., clearing natural forests or grassland to grow annual crops often causes a decrease in biodiversity. In addition, land occupation-i.e., continuous use of land for cropping or grazing of domestic livestock-prevents re-growth of natural vegetation. Hence, land occupation also leads to impacts on biodiversity. So-called 'characterization factors' (CFs) are determined by comparing the relative difference in biodiversity (e.g., using species richness or another indicator) of a certain land use with that of a (natural) reference situation. At a UNEP-SETAC consensus workshop and in a review by (Curran et al., 2016), the methodology suggested by Chaudhary et al. (2015) was recommended as a basis for further method advancement (Westhoek et al., 2016) The most updated variant of this method provides CFs for projecting potential species losses of five taxa resulting from five broad land use types (managed forests, plantations, pasture, cropland, urban) under three intensity levels (minimal, light, and intense use) in each of the 804 terrestrial ecoregions (Chaudhary and Brooks, 2018). It should be noted, however, that this indicator is sensitive to the choice of reference state and is a based on a relatively narrow measure of biodiversity (species count) that disregards other relevant aspects (e.g., endemism), which can have important policy implications (Vrasdonk, Palme and Lennartsson, 2019).

3.2.2 Aquatic biodiversity

Territorial-based indicator(s):

The index Maximum Sustainable Yield (MSY)

Description: Threshold is highest possible yield for the fisheries without risking the reproduction of the fish population.

Indicator:	The index Maximum Sustainable Yield (MSY)
Indicator label:	T-3.2.2a
Type according to	S
DPSIR:	
Target:	Maximum sustainable yield values are set for the focus species.
	Thresholds published by HaV.
Data source:	Artdatabanken:
	https://www.artdatabanken.se/globalassets/ew/subw/artd/2var-
	verksamhet/publikationer/32tillstand-och-trender-2020/tillstand-
	trender.pdf http://stateofthebalticsea.helcom.fi/biodiversity-and-its-
	<u>status/</u> ,
	Havs och vattenmyndigheten (HAV) and (SLU),
	https://www.slu.se/globalassets/ew/org/inst/aqua/externwebb/sidan-
	publikationer/resursoversikten/resursoversikt-2021-220307-mindre.pdf
	https://www.slu.se/globalassets/ew/org/inst/aqua/externwebb/sidan-
	publikationer/resursoversikten/resursoversikt-2021-220307-mindre.pdf

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Fishing can be a	National data is	The indicator is	It is constructed
severe pressure on	of high quality and	easy and	to be used in
aquatic species and	the data is	straightforward to	policy decisions
high harvest	recalculated	interpret.	and likely useful
pressure can result	annually. One		for other analyses
in populations	negative aspect is		as well.
going extinct.	that MSY is not		
Different fishing	calculated for all		
practices that	species and mainly		
negatively impact	focus on fish.		
water environments			
(such as trawling)			
also affects many			

species that are not		
target species. The		
MSY index is		
widely used and		
couples harvesting		
with the status of		
fish populations.		

Area of marine protected areas (Mha)

Description: This indicator describes the area of protected marine habitats within the country.

Indicator:	Area of marine protected areas (Mha)	
Indicator label:	T-3.2.2b	
Type according to DPSIR:	Р	
	Suggested terret is the EU his diversity startess (lessly another	
Target:	Suggested target is the EU biodiversity strategy 'legally protect	
	minimum of 30% of the Swedish marine areas' while research suggests	
	that 37% of marine areas are protected (O'Leary et al., 2016)	
Data source:	SCB: https://www.scb.se/hitta-statistik/statistik-efter-	
	amne/miljo/markanvandning/skyddad-natur/	

Relevant:	High-quality:	Interpretable:	Useful:
Protecting some	National data is of	Data is easy to	As protected areas
marine areas from	high quality.	interpret.	are one of the foremost
fishing and other			ways to save marine
resource use will make			organism from over
it possible for different			harvesting, they are a
species of fish and			tool to conserve
other marine			marine biodiversity
organisms to sustain			and knowledge how
viable populations in			much of these is
these areas. The areas			present is very
will still be affected by			important.
climate change and			
pollution, but will be			
protected from fishing.			

Justification for indicator choice:

Consumption-based indicator(s):

Share of fish in diets that are certified or rated as green in WWFs Fish guide

Description: The indicator assess the share of fish in diets that are certified or rated as green in WWFs Fish guide.

Indicator:	Share of fish in diets that are certified or rated as green in WWFs
	Fish guide.
Indicator label:	C-3.2.2c
Type according to	Р
DPSIR:	
Target:	Not available.
Data source:	Data are not available.

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
It would be	Certification of	The indictor	The indicator
highly relevant to	fish or that they are	(when data exists)	would be a useful
measure the share	rated as green in	would be easy to	to assess the
of fish in diets that	WWFs Fish guide	interpret and to	sustainability of
are certified or	implies that there is	follow over time,	practices regarding
rated as green in	a standardised	given transparent	fish that are
WWFs Fish guide.	approach to	import data on	included in diets.
Current	assessing the	origin and	
consumption	sustainability	harvesting method.	
patterns are	aspects of the		
difficult to sort as	practices regarding		
the same species	fish that are used in		
can originate from	diets. How final		
different locations	consumption		
and harvesting	patterns relate to the		
methods.	certifications or to		
	the fish guide is		
	however still		
	unclear and difficult		
	to assess.		

The Swedish seafood consumption measures to around 12.5 kilos cleaned fish and shellfish per person and year (25 kilos before cleaning). Only 26-28% of the total volume is caught in Swedish waters or from Swedish fish farms, and the rest is imported mainly from Norway followed by Denmark and China (Borthwick, Bergman and Ziegler, 2019; Hornborg, Bergman and Ziegler, 2021) . The most commonly consumed fish is salmon, and almost all comes from fish farms in Norway which receives a "be careful" mark in the WWF fish guide (WWF, 2023; Ziegler *et al.*, no date).

The threats that aquatic diversity are under are diverse and not only from fishing. One if these are agricultural practises that negatively affect biodiversity by, e.g., nutrient and pesticide run-offs. Other negative affects come from using aquatic environments to harvest wild species from and areas to rear organisms in for consumption. There is pollution of different kinds, as well as changes in the temperature and water composition due to climate change. For aquatic systems, there are less data than for the terrestrial systems and biodiversity assessments are not done similarly and as often as in terrestrial environments. This is due to aquatic systems being both harder to work in and to monitor. There are yearly national estimations of the number of commercially interesting fish and shellfish species in major lakes and both the east- and west coast (Sundelöf et al., 2022). The data show the status and trends of the species using data from different populations and areas.

There are no precise national targets for preserving biodiversity in aquatic systems. The Swedish environmental objectives 'Flourishing lakes and streams' includes the general targets: important ecosystem services of lakes and watercourses are preserved, lakes and watercourses have structures and water flows that facilitate habitats and dispersal pathways for wild plant and animal species as a part of a green infrastructure, habitats and naturally occurring species associated with lakes and watercourses have a favourable conservation status and sufficient genetic variation within and between populations, threatened species have recovered and habitats have been restored in valuable lakes and watercourses. 'A nontoxic environment' includes the targets: total exposure to chemical substances via all sources of exposure is not harmful to people or biodiversity, total exposure to chemical substances via all sources of exposure is not harmful to people or biodiversity. 'A balanced marine environment, flourishing coastal areas and archipelagos' include the targets: important ecosystem services of coasts and seas are preserved, shallow coastal areas are characterised by a rich biodiversity and natural recruitment of fish, and offer habitats and dispersal pathways for plant and animal species as a part of a green infrastructure, habitats and naturally occurring species associated with coasts and seas have a favourable conservation status and sufficient genetic variation within and between populations, and populations of naturally occurring fish species and other marine species remain viable, threatened species have recovered and habitats have been restored in valuable coastal and sea waters.

The index most widely used for aquatic species that are managed (i.e. fished) is variation of the threshold Maximum Sustainable Yield (MSY). The goal of this threshold is highest possible yield for the fisheries without risking the reproduction of the fish population. There are also varieties of MSY called F_{MSY} and MSY $B_{trigger}$. They are suitable when the fish species are long-lived and where good data is available. 'F' in F_{MSY} is a measure how much mortality from fishing a population can withstand, where fishing under this value is regarded a sustainable. For MSY $B_{trigger}$ the reproductive part of the population has to be over this value for sustainable harvesting, if not the population has to be managed so that it increases (Sundlöf et al. 2022).

3.2.3 Diversity of domesticated plants and animals

Territorial-based indicator(s):

Shannon index for the number of species and breeds farmed and for crop species and varieties grown

Indicator:	For animals: using Shannon index with the number of species and breeds farmed; for crops using Shannon index for species and varieties grown.
Indicator label:	T-3.2.3a
Type according to DPSIR:	S
Target:	Suggested target is a modification of the EU biodiversity strategy "The diversity of species, breeds and varieties show no decrease" using year 2000 as reference year.
Data source:	Swedish Board of Agriculture: <u>https://jordbruksverket.se/djur/lantbruksdjur-och-</u> <u>hastar/husdjursraser-och-avelsorganisationer/husdjursraser</u> Swedish Board of Agriculture: https://jordbruksverket.se/jordbruket-miljon-och-klimatet/forskning- om-ekologisk-produktion/arkiv/2022-01-17-svenska-genbanker

Description: Diversity of domestic animals and plants used in production.

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The number of	Likely good data on	Easy to interpret.	Would be very useful
domestic animals	some breeds and		as a measure of how this
and plants used in	varieties used in		resource is used from a
food production has	Sweden in general.		resource and diversity
been declining for a	Not easy to access		point of view. It would

long time. There is a	from a database	also be very valuable
problem with that as	presently.	from a human health
diversity of species,		point of view in terms of
breeds and varieties		both nutrients and
means an inherent		cultural values (see
increase resistance		other section).
for disturbances on		
production.		

Consumption-based indicator(s):

Sum of species of animals (including breeds) and plants (including sorts) in the diet / yr

Indicator:	Sum of species of animals (including breeds) and plants (including sorts) in the diet / yr
Indicator label:	C-3.2.3a
Type according to DPSIR:	Р
Target:	None available. Suggested target: > 48 species consumed per year.
Data source:	Dietary surveys by the Swedish Food Agency are irregular (SFA, 2012; 2018), but these give the best information on consumption in Sweden.

Description: Diversity of domestic animals and plants consumed

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The number of	Sum of species	Easy to interpret	This is a very
species, breeds and	consumed per year	but will likely not	useful information
varieties of	has successfully been	show the entire	as there are clear
domestic plants and	used in very scale-	diversity aspect	links between
animals consumed	scale pan-national	which is under the	resilience of food
has declined over	studies (e.g., Hanley-	species level. This	systems - domestic
time. A low	Cook et al. 2021).	is due to that the	biodiversity –
variation of the	This is a taxonomic	index likely will be	diverse diets –
available food	level that can be	based on data that	health. The major
likely affects the	used, though it will	are coarser than	hindrance using
diversity of the	not cover all of the	ideal.	this indicator is that
produced food and	diversity (number of		national surveys are
vice versa. Except	breeds and varieties)		irregular.

from that a species	interesting. Dietary	
rich diet is	surveys by the	
healthier, a highly	Swedish Food	
varied consumption	Agency are irregular	
may positively	(SFA, 2012; 2018),	
influence food	but these give the	
production to be	best information on	
more diverse and	consumption in	
resilient. Suggested	Sweden.	
target >48 species		
consumed per year		
are based that diet-		
related mortality in		
consumers is		
highly reduced		
beyond this level		
(Hanley-Cook et al.		
2021). This solely a		
'human health' part		
of the motivation		
for the index		

The diversity of domesticated species (both animals and plants) is derived from wild biodiversity. This diversity is what forms the biological base of our food (and feed to domesticated animals). Their capacities are the limits that set what nutritional and energetic values that we can derive from agricultural production. A rapid decrease of genetic diversity in domestic species used in agriculture in combination with a low interest in this diversity has been present for decades (Johns et al., 2013; Leroy et al., 2018) The large environmental changes resulting from climate change will threaten food production in many parts of the world. To be able to deal with these threats a new approach is needed that also takes the capacity of domestic species and this existing diversity into account (Bullock et al., 2017). New pathogens are likely to emerge and be more common from the interaction between climate change and habitat degradation (Schmeller, Courchamp and Killeen, 2020). To be able to better withstand the diverse impacts of changes, domestic species need to have a genetic capacity and adaptive ability for them to be resilient (Sejian et al., 2019). With a diversity of domestic animals and plants in the production system, there is a greater ability to maintain a secure food production when facing future threats (Chrenek, Kubovičová and Alexander Makarevich, 2021). Domestic (and geographically suitable species) are also interesting from a Swedish civil contingency perspective (MSB).

An indicator that would measure the diversity of species, varieties and breeds that are used in production and diversity of species consumed would be very good and useful from many different perspectives.

There are no precise national targets at the moment. The Swedish environmental objectives 'A varied agricultural landscape' includes the general target: biological and cultural heritage values of the agricultural landscape that have emerged through long-term, traditional management are preserved or improved, local breeds of domestic animals and the genetic resources of cultivated crops are sustainably preserved. The suggested target is a modification of the EU biodiversity strategy "The diversity of species, breeds and varieties show no decrease' using year 2000 as reference year would work towards keeping a level of biodiversity that future development of suitable species, breeds and varieties could utilise. The Swedish Board of Agriculture has conservation and developmental plans for animal breeds, but not specific numeric targets set(Gustafsson and Nord, 2010).

A diet that is diverse in terms of the plant and animal species that are consumed and the different varieties and breeds therein, may stimulate a food production that is more diverse. Diversity in what is produced will increase the resilience of a food system. By producing more diverse food that the consumers encounter and can choose from, there will likely be a change in the consumers' preferences towards a more varied diet. Diets based on a higher diversity of domesticated plant and animal species, breeds and varieties will then loop back and support a more varied and resilient food production (Chrenek, Kubovičová and Alexander Makarevich, 2021).

3.3 Theme: Preservation of natural resources

Food production is heavily dependent on a range of natural resources including land, water, energy and minerals and also a major user of these resources (UNEP, 2016). The use of natural resources are often inefficient, e.g. only 15-20% of nitrogen and phosphorus added to soils are actually embedded in the food produced (UNEP, 2016). This theme contains indicators to measure the use of crucial natural resources: land, water, energy and mineral fertilisers, both from a territorial and consumption based perspective. The theme is present in the Hebinck et al. (2020) framework, however the sub-themes we included here differ in the following regards: we include the caring of soils ('Stop soil erosion' in Hebinck et al. 2020) in the new theme "Manage soils and water" and the maximum yield for fisheries we treat as a biodiversity conservation theme instead (section 3.2.2). We expand this theme by also considering land, energy and mineral fertilisers, in addition to water which was considered by (Hebinck *et al.*, 2021).

3.3.1 Land use

Territorial-based indicator(s):

Amount of cropland used per year (Mha)

Indicator:	Amount of cropland used per year (Mha)
Indicator label:	T – 3.3.1.a
Type according to	Driver (of resource use)
DPSIR:	
Official target:	Not available
Data source:	Swedish Board of Agriculture:
	https://jordbruksverket.se/e-tjanster-databaser-och-
	appar/ovriga-e-tjanster-och-databaser/statistikdatabasen

Description: The amount of cropland used for agricultural production in Sweden.

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Agricultural land	Good data	Easy and	The indicator is
is generally a	available at the	intuitive to interpret.	useful to assess the
limited resource	Swedish Board of	Quantitative.	amount
(see below).	Agriculture.		agricultural land
However, in			that is used for per
Sweden the goal			year.

might not be to		
minimise this land		
use but rather to		
keep it at a certain		
level to ensure		
production capacity.		

Consumption-based indicator(s):

Amount of cropland used per year (Mha)

Description: The amount of cropland needed per year to produce food (and feed for animals) for the Swedish population.

Indicator:	Amount of cropland used per year (Mha)
Indicator label:	C – 3.3.1.b
Type according to	Р
DPSIR:	
Target:	Cropland use boundary according to EAT-Lancet: 1.3
	Mha year ⁻¹
Data source:	FAOSTAT calculated according to methodology in
	Moberg et al. (2020)

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Cropland is a	Straightforward	Easy and	Lacks official
limited resource	to calculate based on	intuitive to interpret.	policy goals but is
that is crucial for	commodities needed	Quantitative.	highly relevant
food production. It	to produce the food	Clearly reflects the	for assessing
is directly related	in the diet based on	use of this important	resource use from
to food	the yield data which	resource based on	food.
consumption. Land	is available with	the amount and type	Possible to
use tightly follows	good accuracy. Land	of commodities	influence through
the types of food	use is a well-	consumed. The	changes in diet,
commodities in	established indicator	cropland use in	reduced waste and
diets so observing	used in many studies	different	higher yields.
change in this	(Jones et al., 2016).	geographical areas	Threshold
indicator when		can be aggregated.	available through
diets change is		However, as	the EAT-Lancet.
clear. Here we		productivity varies	
decided to use the		across land it could	
amount of		be relevant to bring	

cropland per year	that into the
and capita needed	aggregation of
to produce the	different land type.
food consumed.	However, since
We chose cropland	productivity is
as opposed to total	highly influenced
agricultural land	by management and
since cropland is	inputs we chose in
more limited and a	this initial version to
boundary for	stay with
cropland use has	aggregation without
been suggested in	considering
the literature.	productivity
	variation.

Land suitable for agriculture is a limited resource. Agriculture currently occupies half of the habitable land (FAOSTAT, 2022). Land use is a commonly used indicator in the assessment of foods and diets (Jones et al., 2016). It is calculated from the crop yield (kg per ha), giving the area needed to produce 1 kg of the given food product (Temme *et al.*, 2013). For animal products, the type and the amount of feed are used to calculate the land requirement.

Land use can be divided into different land types reflecting their suitability for different types of production e.g. land suited for annual or permanent crops, or pasture, although studies also commonly show results of land use on an aggregated level only. As some pasture is unfit for cropping (Mottet et al., 2017), it is important to differentiate between different types of land (Eshel et al., 2014; Meier et al., 2014). Global croplands are the major producers of food. Productivity differs considerably between different croplands but is also highly influenced by management and inputs.

The consumption based indicator tracks the cropland use needed for producing the Swedish diet yearly. This land is located both within and outside Sweden. We use cropland here, as opposed to total agricultural land, as cropland is the most scarce resource in terms of land. In terms of targets for land use, the EAT-*Lancet* commission (Willett et al., 2019) suggests a food system land boundary for the global food system of 13 million km² (uncertainty range 11-15 million km²) which equates to a Swedish target of around 13,000 km² or 1.3 Mha (if Swedes constitute 10 million out of a global population of 10 billion) if distributed equally per capita.

In terms of the territorial based indicator, we measure the amount of land used for cropping in Sweden. A low use of land for cropping is preferable from a resource perspective but it is also usually preferable for environmental reasons, as land use for agriculture is a major driver of biodiversity loss (Laurance, Sayer and Cassman, 2014). In

Sweden however, in stark contrast to most other countries, forestry, rather than agriculture, is the dominant user of land. The agricultural land (mainly cropland) occupies only about 7% of the total land area (Statistics Sweden, 2022a).

3.3.2 Water use

Territorial-based indicator(s):

Total blue water used in food production $(m^3 year^{-1})$

Description: The total amount of water used in food production in Sweden (agriculture - irrigation and animal rearing and food processing).

Indicator:	Total blue water used in food production (m ³ year ⁻¹)		
Indicator label:	T – 3.3.2a		
Type according to	Р		
DPSIR:			
Target:	Increase water-use efficiency (SDG target 6.4 ³)		
	(Statistics Sweden, 2016)		
Data source:	Statistics Sweden has use in agriculture and the food		
	sector (Statistics Sweden, 2021a)		

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Although water	Statistics	Easy to interpret	Possible to
availability is	Sweden has data	the indicator as such	influence through
generally good in	on aggregated	but for the amount	changes in
Sweden, it is still	level – should be	of water is not easily	management.
relevant to follow	enough to follow	relatable. Rather it is	
how water use	this on the	the trend in total	The official
develops over time.	aggregated	water use that can be	policy goals are
	territorial level.	easily interpretable.	formulated as
			increased water use
			efficiency which
			does not match the
			indicator directly.

³ Target 6.4: By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity. <u>https://unstats.un.org/sdgs/metadata/?Text=&Goal=&Target=6.4</u>

[•] Indicator 6.4.1: Change in water-use efficiency over time (CWUE).

[•] Indicator 6.4.2: Level of water stress: freshwater withdrawal as a proportion of available freshwater resources

Level of water stress - freshwater withdrawal as a proportion of available freshwater

Description: Level of water stress. Measures freshwater withdrawal as a proportion of available freshwater.

Indicator:	Level of water stress - freshwater withdrawal as a proportion of available freshwater
Indicator label:	T – 3.3.2b
Type according to	Ι
DPSIR:	
Official target:	Increase water-use efficiency (SDG target 6.4)
Target:	Not available
Data source:	https://sdg6data.org/indicator/6.4.2

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
This indicator	An SDG	Relatively	Water stress can
complements the	indicator so well	interpretable.	be reduced by
indicator of total	established.		management, but
water use by			this indicator also
accounting for also			reflects water
the availability of			availability which
freshwater.			is determined by
			many factors
			external from the
			food system (e.g.
			climate).

Consumption-based indicator(s):

Total blue water used for food consumption $(m^3 \text{ year}^{-1} \text{ per year})$

Description: The amount of water needed to produce food for the Swedish population.

Indicator:	Total blue water used for food consumption (m ³ year ⁻¹ per year)
Indicator label:	C – 3.3.2c
Type according to DPSIR:	Р
Target:	Land use boundary according to the EAT- <i>Lancet:</i> 339 m ³ capita ⁻¹ year ⁻¹
Data source:	Moberg et al. 2020

Scarcity adjusted blue water use

Indicator:	Scarcity adjusted blue water use, https://wulca-		
	waterlca.org/aware/what-is-aware/		
Indicator label:	C – 3.3.2d		
Type according to	Ι		
DPSIR:			
Target:	Not available		
Data source:	https://wulca-waterlca.org/		

Description: Indicator of scarcity adjusted blue water use.

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Water is a	Straight-	Rather easy and	Lacks official
limited resource	forward to	intuitive to interpret,	policy goals but is
that is crucial for	calculate based on	especially blue water	highly relevant for
food production. It	available water use	use although the	assessing resource
is directly related to	data and scarcity	number says little to	use from food.
food consumption.	factors available in	people. Quantitative.	Possible to
Both indicators	literature.	Clearly reflects the	influence through
follows the types of	However, water	use of this important	changes in diet,
food commodities	use data is old and	resource based on	reduced waste and
in diets and for	associated with	the amount, type and	change in origin.
scarcity it reflects	large uncertainty.	origin of	Threshold
where crops are	Precise water	commodities	available through
grown. Observing	scarcity factors	consumed. Blue	the EAT-Lancet
change in this	require knowledge	water use in	for blue water use.
indicator when	of watershed in	different	
diets change is	which food is	geographical areas	
clear.	grown which is	can be aggregated.	
	seldom available.		
	Water use is a		
	well-established		
	indicator used in		
	many studies		
	(Jones et al.,		
	2016).		

Water is another important resource for food production. It has been estimated that the global food system accounts for 70% of the global freshwater use (Steffen et al., 2015). In a global perspective, water availability in Sweden is usually good, although with great inter-annual and geographical variation. There are no official policy targets related to water use in Sweden except the SDG target 6.4, which states that the water-use efficiency should be increased and that the sustainable water withdrawals should be ensured. Measuring water use is complex and dependent on multiple data sources. In Sweden, the total water use in different sectors is assessed regularly (Statistics Sweden, 2021a) . Here we include both the total water use to be consistent with the other indicators in this theme, and an indicator also reflecting the water stress caused by the use of water.

On the consumption side, a commonly used indicator for water use is the water footprint (WF) as set out by the Water Footprint Network (Aldaya et al., 2012)). The WF is the demand for freshwater resources required in all life cycle steps to produce goods and services. It represents a measure of human appropriation of freshwater, which is measured as the volume of water used. Water use can be direct or indirect, where direct use is the individual's direct consumption of water, such as water for cooking, whereas indirect use, sometimes called 'virtual water', is the water needed for all goods and services earlier in the supply chain. In addition, water is divided into green, blue and grey water. Blue water is surface or groundwater, green water is rain water or moisture stored in the topsoil layer and grey water is the volume of freshwater needed to 'assimilate a load of pollutants' caused by the activity in question. The grey water volume is affected by the natural background concentration of pollutions and existing water quality standards. As blue water in some respect represents water as a finite resource, it is common to let blue water represent the overall WF (Eshel et al., 2014), which is also our choice here as one of the consumption indicators. This can also be used to compare against the EAT-Lancet boundary for freshwater use.

Methodologies to account for the differences in the actual impact of water use given regional differences in water scarcity have also been developed (Ridoutt and Pfister, 2010). (Hess *et al.*, 2015) suggest an indicator called the Water Stress Index (WSI) which reflects blue water availability. The WSI is expressed as a number between 0.01 and 1, where a value of <0.01 indicates no water stress, values between 0.1 and <0.2 indicate a low water stress, values between 0.2 and <0.4 indicate a moderate water stress, values between 0.4 and <0.8 indicate a high water stress and values of >0.8 indicate a very high water stress. Hess et al. (2015) used the WSI to calculate a blue water scarcity footprint (WSF) (m3 H20 equivalents) which reflects the equivalent amount of water withdrawn from a water body at the global average level of water stress.

There is some controversy as to whether water use quantification or including water stress is most appropriate.(Hoekstra, 2016) lists the potential pitfalls and dangers of

weighting the water footprint with water stress or scarcity and argues that the WSI obscures the debate of water resources, neglects the importance of green water scarcity, is inconsistent with how other environmental footprints are designed and lacks 'meaningful physical interpretation'. A recent consensus building process within the UNEP-SETAC Life Cycle Initiative recommends the use of the AWARE method which is based on "the quantification of the relative available water remaining per area once the demand of humans and aquatic ecosystems has been met" (Boulay *et al.*, 2018). Here we decided to use both the blue water use that can be compared against the EAT-*Lancet* boundaries (Willett et al., 2019) which is easy to interpret and the water scarcity adjusted blue water use to account for the scarcity of water resources.

3.3.3 Energy use

Territorial-based indicator(s):

The use of primary energy per year for food production in Sweden (agriculture, food industry)

Description: The total amount of energy used in food production in Sweden (agriculture and food industry).

Indicator:	The use of primary energy per year for food production in Sweden (agriculture, food industry). This indicator includes on-farm energy use, indirect energy i.e. energy to produce inputs are not included.
Indicator label:	T - 3.3.3a
Type according to	Driver (of resource use)
DPSIR:	
Official target:	Not available
"Science-based	Not available
target":	
Data source:	For energy use in Swedish agriculture:(Swedish Energy
	Agency, 2019)
	For energy use in Swedish Food industry: (Swedish
	Energy Agency, 2022) Swedish Energy Agency (2022)

Relevant:	High-quality:	Interpretable:	Useful:
Energy in	Energy use,	Rather easy and	The indicator is
different forms	converted to	intuitive to interpret.	highly relevant for
(e.g. electricity and	primary energy	Clearly reflects the	assessing resource
liquid/solid fuels)		use of energy.	use from food.

are limited	with conversion	Targets for the
resources and	factors.	agrifood sector
crucial for the		specifically is
entire food	Energy use in	lacking, however
production value	agriculture is	part of the SDGs
chain. By	reported per	and national
following energy	disaggregated	targets for energy
use, an indication	energy source and	use in society can
of the energy	can be converted to	be applied.
efficiency of the	primary energy.	
food production		Possible to
can be obtained.	Energy use in	influence through
	the food industry is	changes in diet,
	reported as total	reduced waste and
	energy and divided	energy efficiency
	by fossil electricity	throughout the
	and biomass. So in	value chain.
	order to recalculate	
	to primary energy,	
	a few assumptions	
	have to be made	
	e.g. on electricity	
	mix.	

Consumption-based indicator(s):

The use of primary energy per year for food consumption

Description: The amount of energy needed to produce food for the Swedish population (agriculture and food industry within and outside the country, production of inputs, transports, domestic energy use by retail and consumer).

Indicator:	The use of (primary) energy per year for food
	consumption
Indicator label:	T – 3.3.3b
Type according to	Driver (of resource use)
DPSIR:	
Official target:	Not available
"Science-based target":	Not available
Data source:	For energy use in Swedish agriculture: (Swedish
	Energy Agency, 2019). For energy use to produce
	inputs: Import/use of agricultural inputs from e.g.

Statistic Sweden and coupled energy use factors from
literature. For energy use in Swedish Food industry:
Swedish Energy Agency (2022). For transports, retail,
consumer: No readily available data. For energy use of
imported food: Research projects, I/O databases e.g.
Exiobase

Justification for	indicator choice:
-------------------	-------------------

Relevant:	High-quality:	Interpretable:	Useful:
Energy in	Direct energy	Rather easy and	Is highly
different forms	use in agriculture	intuitive to interpret.	relevant for
(e.g. electricity and	and food industry	Clearly reflects the	assessing the
liquid/solid fuels)	available, see	use of energy.	resource use from
are limited	energy territorial-		food. Targets for
resources, but	based indicator.		the agrifood sector
crucial for the			specifically is
entire food	Indirect energy		lacking, however
production value	use by agriculture		part of the SDGs
chain. By	(imported to farms		and national
following energy	in form of products		targets for energy
use, you can get an	e.g. mineral		use in society can
indication of the	fertilisers based on		be applied.
energy efficiency	fossil energy) can		
of the food	be calculated based		Possible to
production.	on literature.		influence through
			changes in diet,
	Data for energy		reduced waste and
	use for food		energy efficiency
	transport, retail and		throughout the
	consumer is not		value chain.
	readily available,		
	neither energy use		
	data of imported		
	food.		
	Conversion to		
	primary energy will		
	require assumptions		
	on e.g. energy		
	sources in		
	electricity mix.		

Energy is an important input in agriculture, both as a direct energy use at farms (e.g. diesel for farm machinery, crop crying, heating and cooling) but agriculture is also indirectly dependent on energy (e.g. for production of nitrogen mineral fertilisers). Further along the food chain, energy is also important for the transportation of ingredients and food, the food industry and retail. As many energy sources are limited resources (oil, gas, coal, uranium) this is an important sustainability issue for the food chain. Many energy sources are also obtained from politically instable regions, which pose a threat to Sweden's ability to produce food. During the war in Ukraine, we have for example seen very sharp increases in the nitrogen fertiliser prices (Russia is a large producer of nitrogen fertilisers based on natural gas, as well as a large supplier of gas used for fertiliser production in European countries).

The data for direct energy use in agriculture is available at the (Swedish Energy Agency, 2019). There are however no statistics on indirect energy use, i.e. energy used for e.g. the production of inputs, this must be calculated based on the import statistics of agricultural inputs and coupled energy use factors from the literature. (Landquist *et al.*, 2019) estimated the total energy use in Swedish agriculture to 6 and 3.5 TWh for the direct and indirect energy respectively. The data for the direct energy use in the food industry (estimated to 5 TWh in 2020) is available at the Swedish Energy Agency (2022), a yearly publication of energy use in Sweden. As a comparison, the total energy use in Sweden was 369 TWh in 2019.

There are no official statistical data available on the energy use of the food consumption level that also includes energy for imported foods. However, in a project funded by the Swedish Environmental Protection Agency the impact of Swedish consumption both inside and outside Sweden's borders was mapped. For the year 2014, it was estimated that agricultural products, food, beverages and tobacco used 27 TWh of fossil and biobased energy (PRINCE project, 2022).

The political parties in Sweden have agreed on a goal of 50% improvement in energy efficiency by 2030, compared to 2004. In December 2021, the Swedish Energy Agency put forward five strategies for how to reach this goal in different sectors, including production, trade and consumption (Swedish Energy Agency, 2021). Food and agriculture is however not mentioned in any of these documents.

A governmental investigation on fossil independent agriculture was commissioned in 2021. The purpose was to explore how less fossil fuels can be used to reduce climate impact, decrease dependency on import of agricultural input products, and to strengthen Swedish agriculture's competitiveness. The investigation put forward a number of suggestions on policy measures to fulfil this goal (SOU, 2021).

There is an SDG goal for energy efficiency: SDG target 7.3: "By 2030, double the global rate of improvement in energy efficiency". The indicator for this target is "Energy intensity measured in terms of primary energy and GDP". Likewise, the European Union has

committed itself to a 20% improvement in the energy efficiency target for 2020 and at least 32.5% target for 2030, compared to 2007. Targets for the agrifood sector specifically are lacking.

An optional indicator could be to track fossil fuel, nuclear and renewable energy separately. This way, a clearer picture of the depletion of finite resources can be captured. This can be done for the territorial-based energy indicator were disaggregated data is available. Finding disaggregated energy data for the consumption-based indictor will on the other hand be a challenge.

The lack of disaggregated energy data for imported foods will also make it difficult calculate the primary energy use, as each energy source (fossil, nuclear, wind etc) has its own primary energy conversion factor. Rough assumptions can be made e.g. electricity mix in countries from where we import food for the calculations. If it is not possible to calculate the primary energy use, the total energy use can however give a sufficient overview.

3.3.4 Mineral fertiliser use

Territorial-based indicator(s):

Use of virgin P per year (Mt)

Description: The amount of virgin mineral fertilisers used in food production in Sweden (agriculture, food industry, retail, consumer).

Indicator:	Use of virgin P per year (Mt)	
Indicator label:	T – 3.3.4a	
Type according to	Р	
DPSIR:		
Target:	50 percent of the phosphorus recycled to food production	
	by 2030 and/or an obligatory share of the recycled	
	phosphorus in all sold products (as suggested by The	
	delegation on circular economy, 2022).	
Data source:	Statistic Sweden, import statistics	

Consumption-based indicator(s):

Use of virgin P per year (Mt)

Description: The amount of virgin mineral fertilisers to produce food for the Swedish population.

Indicator:	Use of virgin P per year (Mt)
Indicator label:	T - 3.3.4b
Type according to	Р
DPSIR:	
Target:	1.1 kg P per capita per year (Willett et al., 2019)
Data source:	Moberg et al. (2020).

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Minerals in	For phosphorus,	Clearly reflects	Is highly
different forms	indicators have so	the use of minerals,	relevant for
(e.g. phosphorus,	far been mainly	comparable over	assessing the
potassium,	directed toward	time and different	resource use from
sulphur) are	environmental	diets and countries,	food. Targets for
limited resources,	impact and not so	easy to	agrifood sector
but crucial for food	much as a limited	communicate.	specifically is
production. By	resource.		lacking, however
tracking use of			part of the SDGs
virgin mineral	For phosphorus,		and national
fertilisers, you can	Moberg et al.		targets for energy
get an indication of	(2020) provide data		use in society can
the efficiency and	for Swedish food		be applied.
recirculation level	consumption. Data		
in the food system.	is not readily		Possible to
	available for the		influence through
	other minerals.		changes in diet,
			reduced waste and
			by changing food
			system towards
			more circular
			flows.

Minerals are indispensable building blocks in plants and must be added to soil to replace the minerals in crops removed from the land and lost to surrounding ecosystems. At the same time, minerals are limited resources. To secure future food production, the use of virgin mineral fertilisers must decrease and the recycling rate of nutrients within agriculture and from urban to agriculture must increase. The global economic reserves for production of mineral phosphorus fertiliser were in 2021 estimated correspond to 323 years of production (USGS, 2022), while the reserves for the production of potassium and sulphur fertilisers in 2017 were estimated to 93 and 60 years of production, respectively (Jönsson, 2019). Nitrogen fertilisers are produced in a chemical process (Haber-Bosch) which requires nitrogen from normal air and hydrogen. The hydrogen is often obtained from fossil fuels, thus nitrogen fertilisers are covered in the energy indicator.

In this work we focus on phosphorus. It could be of interest to also include more indictors e.g. for potassium, sulphur and micronutrients (e.g. boron, copper, manganese, zinc) which are limited natural resources. However, fertilisers are often spread as compounds so by focusing on phosphorus we can get an indication of the overall mineral fertiliser use. Further, since phosphorus has been of societal interest due to its eutrophication issues and the limitations of the resource, there is much more data for phosphorus than for the other macro- och micronutrients.

Global phosphate fertiliser consumption amounted to some 45.6 million metric tons in 2018 (Statista, 2022), equivalent to about 6 kg P per capita. However, the use is very unevenly distributed with shortages in low-income countries (Langhans et al., 2022)For phosphorus, the per capita boundary downscaled from the global boundaries given by the EAT-Lancet Commission is 1.1 kg P per year (Moberg et al., 2020). This includes the application of phosphorus as mineral fertiliser, for which the EAT-*Lancet* Commission set a boundary based on the maximum inputs that do not lead to eutrophication of terrestrial and marine systems (Willett et al., 2019). In other words, the boundary is not set with regards to phosphorus being a limited resource.

The Swedish government has investigated the recirculation of phosphorus for several decades. In the latest investigation 2019, it was suggested that at least 60 percent of the phosphorus contained in produced sewage sludge must be recycled on an annual basis for wastewater treatment plants with more than 20 000 person equivalent connected (Swedish Government Official Reports, 2020). A Swedish delegation on the circular economy has also come forward with several suggestions, for example a goal of at least 50 percent of phosphorus recycled to food production by 2030, and to introduce an obligatory share of recycled phosphorus in all sold products (The delegation on circular economy, 2022).

3.4 Theme: Clean air and water

Clean air and water are fundamental for the health of humans and ecosystems but are currently seriously threatened by agriculture and other human activities. Eutrophication, caused by nutrient enrichment of aquatic ecosystems due to losses, overuse or misuse of nitrogen and phosphorus, is one severe environmental problem leading to algae blooms, degradation of water quality and oxygen depletion. The water quality can also be negatively affected by pesticide leaching.

The food system also contributes to air pollution. Ammonia is a substance of particular interest since the contribution from agriculture to the total national emissions amount to 88% (Statistics Sweden, 2022). Also other air pollutants are associated with food production but not at such a large proportion as ammonia, why only ammonia emissions were included as an indicator in this report.

Under this theme, progress indicators similar to the ones included in Hebinck et al. (2021) are proposed, i.e. reduction of phosphorus and nitrogen surplus presented under the heading 'Eutrophication', reduction of ammonia and reduced use of toxic substances.

3.4.1 Eutrophication

Territorial-based indicator(s):

N and P surpluses on Swedish agricultural land expressed in total and per ha

Indicators:	N and P surpluses on Swedish agricultural land expressed in total and per ha.
X 1 X 1 X 1	T 241.1
Indicator label:	T – 3.4.1a-b
Type according to	Р
DPSIR:	
Target:	Not available
Data source:	Statistics Sweden (2021) presents nutrient budgets for
	Swedish agricultural land on regular, but not yearly, basis.
	Yearly estimates can be compiled using other statistical data.

Description: Nitrogen and phosphorus surplus

Relevant:	High-quality:	Interpretable:	Useful:
Gives a clear	High-quality	Easy to interpret	Lacks official
indication of the	data based on	in particular if	policy goals but is
risk of losses (but	compiled	expressed per	used in extension
proximity to	information from	hectare.	service on farm
sensitive	Statistics Sweden.		and field level, in
watercourses and	The two recent		legislation on field
regional variations	publications with		level and in
also need to be	N and P budgets		different
considered)	consider the years		certification
	2016 and 2019.		schemes (e.g.
			KRAV and Sigill).

Justification for indicator choice:

Consumption-based indicator(s):

P fertiliser to arable land per year (thousands of tons)

Description: Amount of phosphorus fertiliser from mined origin that is used to produce the food in the Swedish diet.

Indicator:	P fertiliser to arable land per year (thousands of tons)
Indicator label:	T – 3.4.1c
Type according to	Р
DPSIR:	
Target:	Based on EAT-Lancet (Willet et al., 2019) and current
	global population: 1.1 kg P capita ⁻¹ year ⁻¹
Data source:	Moberg et al. 2020 (and references herein)

Total new reactive kg N (synthetic fertiliser+N-fixation) to arable land per year (thousand tons)

Description: New reactive nitrogen to arable land.

Indicator:	Total new reactive kg N (synthetic fertiliser+N-fixation)		
	to arable land per year (thousand tons)		
Indicator label:	C – 3.4.1d		
Type according to	Р		
DPSIR:			
"Science-based	According to EAT- <i>Lancet:</i> 12 kg N capita ⁻¹ year ⁻¹		
target":			
Data source:	Moberg et al. 2020 (and references herein)		

Deless nt		Tu (I.I., . f1.
Relevant:	Quality:	Interpretable:	Useful:
High P	High-quality	Easy to	Can be used on
application over	data available for	understand.	different levels
time increases the	consumption of	However, only	and data from
risk for	food produced in	indirectly reflecting	farm level can be
eutrophication in	Sweden which can	the actual impact	compiled into
freshwater systems	be based on sale	due to varying	indicators for
but also in parts of	statistics and	retention, soil status,	products as well.
the Baltic Sea.	fertiliser use from	soil types and	
	SCB's	management. E.g.	
Excess N	questionnaires.	high P application	
application (above	Higher uncertainty	implies higher risk	
crop's need)	for imported	in areas close to	
increases the risk	products but good	watercourses and in	
for eutrophication	estimates available	soils with P-	
in the sea and	(e.g. in Moberg)	saturation/ high P	
increases the risk		status. Do not	
for nitrate		consider removal	
contamination of		through crops and	
groundwater.		thus surplus.	

Justification for indicator choice:

The biochemical flows of phosphorus and nitrogen have been identified as beyond a "safe operating space" for human societies with transgressed boundaries for both nitrogen and phosphorus according to Steffen et al (2015). The boundary for phosphorus is defined both on a global level, including phosphorus from freshwater systems into the ocean, and on a regional level emphasising freshwater eutrophication, based on application of phosphorus mineral fertilisers.

Phosphorus is usually considered the limiting nutrient in freshwater systems while nitrogen is the limiting nutrient in coastal and oceanic waters. However, in the Baltic Sea, phosphorus is also a limiting factor in parts of the sea. According to Bergström et al., (2018), more than 97% of the Baltic Sea suffers from eutrophication and despite many measures taken, urgent actions are still needed to improve the status. "Zero eutrophication" is thus one of Sweden's environmental objectives formulated as: "nutrient levels in soil and water must not be such that they adversely affect human health, the conditions for biological diversity or the possibility of varied use of land and water." Due to the severe situation, nitrogen and phosphorus application rates are also strictly regulated in the Swedish legislation since long.

The combination of the severity eutrophication poses and the role of food system as a driver (according to Poore and Nemecek, food production causes 78% of eutrophication), means that indicators which can be used for identifying the overuse and tracking changes in the risk for losses are of utmost importance.

Although the link between nitrogen and phosphorus application and leaching is not straightforward due to inherent spatial and temporal variability, we still suggest an indicator for consumption based on the application of new reactive nitrogen (including synthetic nitrogen fertilisers and symbiotic nitrogen fixation) and synthetic phosphorus fertiliser since it is relatively easy to collect and compile data for these. This is also in line with the proposed global indicator from the EAT-*Lancet* commission built on a refinement of the variables proposed in the Planetary boundary framework. Moberg et al. (2020) downscaled the EAT-*Lancet* boundary to a figure expressed per capita for assessment of the Swedish diets, which can be used for Swedish food consumption when multiplied with the number of inhabitants in Sweden.

The same indicator for consumption could potentially be used also for territorial impact (domestic agricultural production), i.e. the total amount of P as synthetic fertiliser and new reactive nitrogen applied to arable land. However, since more detailed information is available for the Swedish agriculture through Statistics Sweden, we suggest more fine-tuned indicators based on budgets for agricultural land, which consider also other inflow of nitrogen and phosphorus as well as outflow (as harvest). These indicators can also be expressed in percentage indicating the efficiency. The proposed indicators can also be populated with farm data of high resolution from extension service through the project "Greppa Näringen" which can be used for benchmarking. We further suggest that the territorial indicators are expressed both in total for Sweden and per hectare. Presenting the territorial indicators as surplus *per hectare* (instead of total surplus for Sweden) makes it possible to compare regions and farm types, and is easier to intuitively understand.

In addition, the overuse and misuse of nitrogen does not only increase losses to water but also increases the risk for nitrous oxide emissions, which also stresses the importance of efficient use of nitrogen.

3.4.3 Use of toxic substances

Territorial-based indicator(s):

Pesticide risk index for health and environment

Description: Pesticide risk

Indicator:	Pesticide risk index for health and environment
Indicator label:	T – 3.4.3a-b

Type according to DPSIR:	Ι
Official target:	Not available
Data source:	The Swedish Chemical Agency (2004)

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The indicator	High-quality	Easy to compare	Already in use
includes both	data based on	over years, and	for national
amount and risk	actual use and a	possible to interpret	evaluation but
and is presented	risk assessment in	what is behind the	could also be used
yearly	use for many years	variation between	on other levels
		the years	(regional and farm
			level)

Consumption-based indicator(s):

Organic products' share of total market value

Description: Pesticide use

Indicator:	Organic products' share of total market value
Indicator label:	T - 3.4.2c
Type according to DPSIR:	D
Target:	There is an official target currently that says that 60% of food in public procurement should be
	organic.
Data source:	Joint publications from Ekologiska Lantbrukarna,
	Ekomatcentrum and Organic Sweden (Ekologiska lantbrukarna, Ekomatcentrum and Organic Sweden,
	2022)

Justification	for	indicator	choice.
Justification	jor	mancanor	choice.

Relevant:	High-quality:	Interpretable:	Useful:
Not using	Data for sale and	Easy to interpret	Useful since it
pesticides is a core	purchase is		is reported yearly
principle of	collected and		and can be related
organic farming	reported yearly in a		to targets set by
and an increasing	joint publication by		different actors in
market share of	three organisations		the food system.
organic products	Ekologiska		

reduces the total	Lantbrukarna,	
pesticide use and	Ekomatcentrum and	
thus the associated	Organic Sweden	
risks.		

Pesticides are efficient in boosting crop yields but are also harmful to the environment and human health if not managed properly. Pesticides and other toxic substances are included in the Swedish Environmental Quality Objective 'A Non-Toxic Environment' with several indicators, e.g. a toxicity index for the level of pesticide residues in surface water. Due to the risks associated with pesticides, the European Commission calls for a reduced dependency on pesticides in their Farm to Fork Strategy (European Commission, 2020b). The European Commission has also established 'Harmonised Risk Indicators' to track progress towards a reduction of the risks related to pesticides. One indicator is based on the quantities of active substances on the market, using weighting factors based on the classification of the active substance. The Swedish Board of Agriculture and the Swedish Chemicals Agency have 22 different indicators in use for evaluation of the risk with pesticides. Two of these indicators are a national risk index for health and environment based on the calculation model 'PRI-Nation' and the proportion of organically cultivated agricultural land. The model 'PRI-Nation' was developed by the Swedish Chemicals Agency (2004) for tracking trends in the impact of pesticides over time. Based on the same approach, the Swedish Chemicals Agency has also developed the indicator model, 'PRI-Farm', which is used to evaluate pesticide risk trends on individual farms and between production systems.

The indicator based on 'PRI-Nation' considers both environment and health aspects for about 300 substances and is compiled and presented yearly together with hectare doses. This indicator is also considered a suitable indicator for the territorial evaluation of Swedish food production in our framework and can potentially also be complemented with the area cultivated according to the principles of organic farming.

Toxic substances affecting food systems are both unintentionally spread and intentionally used in agriculture. An example of the first is e.g. heavy metals applied to cropland through manure and sewage sludge or via precipitation. Under this heading we focus on the second type of toxic substances, i.e. the use of agricultural pesticides. Cadmium is a highly toxic heavy metal causing deep concern. The inflows and accumulation of cadmium on field level is therefore included in the regulation as well as in the standards (e.g. Svenskt Sigill). However, detailed data is not available for populating indicators on a food system level why we exclude cadmium and other heavy metals from this compilation of indicators.

A large proportion of pesticide use related to food consumption is associated with imported food. Due to a lack of reliable data on pesticide use in specified imported food, there is a need for a more general approach. In our framework we propose the organic products' share of total market value as the consumption-based indicator for pesticide use since this information is already collected and presented yearly. A drawback is that it only roughly indicates hazardous use of pesticide since it gives no information of the pesticide intensity and associated risk in the remaining production of conventional food consumed.

As an alternative, we also suggest the use of an indicator for agrochemicals developed in the PRINCE-project and based on a combination of statistics and a global multi-regional input output database called EXIOBASE3 (Cederberg et al., 2019). This indicator better reflects hazardous use of pesticides but is not yet as easily available as information of market value. The Swedish Food Agency (2021) is monitoring pesticide residues through extensive analyses and specific pesticide residues have also previously been suggested as an indicator (The Swedish Food Agency, 2012). A possible indicator on consumption level could potentially therefore be the proportion of food that exceeds the maximum residue level (MRL). However, since the selection in the analyses is directed towards food products considered to have a higher risk of exceeding limit values and foods for more vulnerable target groups such as young children are selected in larger extent, we believe that the indicator has too many limitations for our purpose.

3.4.5 Air pollution

Territorial-based indicator(s):

Ammonia emissions per year (thousand tons)

Description: Ammonia emissions

Indicator:	Ammonia emissions per year (thousand tons)
Indicator label:	T – 3.4.5a
Type according to	Р
DPSIR:	
Target:	17% decrease until 2030 compared to 2005 according to
	National Emissions Ceilings (NEC) Directive
	(2016/2284/EU).
Data source:	Statistics Sweden (2022b) based on e.g. SMED.

Relevant:	High-quality:	Interpretable:	Useful:
High relevance	High-quality	Straightforward,	Already in use
since reduction of	data available	can be used on	and important for
NH3 is a	based on statistics,	different levels.	following-up
prioritized area of	inquiries and		emissions
concern.	national estimates		reduction targets.
	yearly updated by		
	SMED using their		
	emission		
	calculation model.		

Justification for indicator choice:

Consumption-based indicator(s):

Ammonia emissions per year from Swedish consumption (thousand tons)

Description: Ammonia emissions

Indicator:	Ammonia emissions per year from Swedish consumption
	(thousand tons)
Indicator label:	T - 3.4.5b
Type according to	Р
DPSIR:	
Target:	Not available.
Data source:	Moberg et al. (2020)

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
High relevance	Available data	A direct measure	The EU
since reduction of	for 52 food	of the burden.	directive in place
NH3 is a	products in		targeting the
prioritized area of	Moberg et al		territorial level.
concern.	(2020) but more		Also a
	fine-tuned data		consumption-based
	taking into account		indicator could be a
	the variability is		complement to also
	desirable in the		address imported
	future		food.

Ammonia emissions are of environmental concern for several different reasons. They are contributing to soil acidification and terrestrial and aquatic eutrophication. Indirectly, ammonia emissions lead to nitrous oxide formation, a potent greenhouse gas and ammonia may also cause health problems through the formation of secondary inorganic aerosols (Hellsten, 2017). The single most dominant source of ammonia volatilisation in Sweden is from storage and spreading of manure, which means that ammonia emissions are of particular concern for the food system. Regulations with regards to regards storage facilities, and timing and techniques for spreading are in place and have been sharpened over time and through the national advisory programme 'Greppa Näringen' (Focus on Nutrients) together with environmental investments through the Rural Development Programme other policy instruments are available (Hellsten, 2017). However, after a slight decrease in yearly emissions between 1990 and 2010, there has been no clear sign of further decrease in Sweden (Swedish Environmental Protection Agency, 2021) and further actions are needed to reduce the emissions. In the EU directive 2016/2284/EU (the National Emission Reduction Commitments Directive or the NEC-directive) and the Gothenburg Protocol, national ceilings are defined for ammonia emissions, and a target for reduction (17%) is set for the year 2030 in relation to the base year 2005. In Sweden, the consortium SMED (Swedish Environmental Emissions Data) is responsible for estimating the emissions using an ammonia calculation model (www.smed.se).

An indicator for terrestrial emission of ammonia can be based on yearly updated highquality data provided by SMED through their emission calculation model which is based on statistics, inquiries and national estimates. This indicator is important to include for territorial emissions related to food production since there is a strong focus on territorial reduction measures through legislation, advisory service, investments etc. As a consumption-based indicator we suggest data from the supplementary material in Moberg al (2021) to be used. This data is provided for 52 different food groups and can be used for summarising the entire consumption including diet changes over time. However, since no variability within each food product is considered, the consumption-based indicators should be considered rather coarse.

3.5. Theme: Manage soils and water

Access to good quality soils and the management of water resources are indispensable for food production. This is a new theme in comparison with Hebinck et al. (2020) we added to reflect the importance of these resources separately. While the theme 3.3, 'Preservation of natural resources' deals with the preservation of these resources per se, i.e. as a sustainability issue in itself, here we deal with the management of soils and water for their use as production resources in agriculture. That is, limiting land use to avoid agriculture's expansion into pristine ecosystems is a sustainability aspect dealt with under 3.3, while here we are concerned about the soil fertility of agricultural soils for agricultural production. A major distinction between the two sections is thus that individual producers have a large impact on managing natural resources at the farm and noticing improvements, which are included in this section. The topics covered in 3.3 concern the common goods on a larger scale, where the individual farmer cannot directly see improvements created by their own actions.

3.5.1. Soil fertility

Territorial-based indicator(s):

Changes in soil organic carbon (SOC) in mineral topsoils on cropland (thousand tonnes per year)

Indicator:	Changes in soil organic carbon (SOC) in mineral topsoils	
	on cropland (thousand tonnes per year)	
Indicator label:	T – 3.5.1a	
Type according to	S	
DPSIR:		
Target:	Not available.	
Data source:	The National Inventory Report (NIR) (United Nations,	
	2021) based on modelling using ICBM.	

Description: Changes in soil organic carbon

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
SOC is often	Changes in SOC	Easy to	Already in use
proposed for and	are often modelled	understand and	and can be used for

commonly used as	using the soil C	interpret. Could	multiple purposes
an indicator for	model ICBM,	easily also be	besides being an
soil fertility since	which is	recalculated and	indicator for soil
C content is	continuously	presented as soil	fertility, e.g. a
positively	refined using data	organic matter	measure for carbon
associated with	from long-term	which is easier for	sequestration as a
many soil-related	field experiments.	e.g. farmers to	climate mitigation
ecosystem	Can be	interpret.	option.
services.	complemented with		
	other modelling		
	tools, soil		
	monitoring and/or		
	field trials.		

Background

According to the FAO, soil fertility is "the ability of a soil to sustain plant growth by providing essential plant nutrients and favorable chemical, physical, and biological characteristics" (FAO, 2022). Soil fertility is thus a key component in sustainable food systems. However, constructing an indicator for food consumption based considering the variety of products from many countries and regions does not seem possible since soil fertility shows great variation across regions at the same time as information on soil status often is lacking. One of Sweden's environmental quality objective ('A varied agricultural landscape') considers the maintenance of "the physical, chemical, hydrological, and biological qualities and processes of arable land." However, despite the importance of soil fertility, Sweden has no indicators in use specifically for this environmental quality objective.

Many different indicators have been proposed in the literature with the most common being organic matter, pH, available P and water storage (Bünemann *et al.*, 2018). Soil organic matter (of which slightly more than half consists of soil organic carbon (SOC)) is positively associated with water-holding capacity, nutrient delivery and erosion resistance and has been suggested as a robust indicator for soil fertility or soil quality (see e.g (Milà i Canals, Romanyà and Cowell, 2007) and production capacity of agricultural soils (Fanzo et al., 2021). Other possible indicators are e.g. bulk density or earthworm diversity but they are not commonly assessed since data is not available with required coverage.

The changes in SOC in Swedish arable topsoil are quantified both in the Swedish soil and crop monitoring programme and in the National Inventory Report (NIR). The soil and crop monitoring programme includes approximately 2000 sites all over Sweden on different farm types with repeated sampling every ten years (Henryson et al., 2022). The monitoring programme thus gives information about retrospective changes in the SOC but is only suitable for trend evaluation over past decades, not yearly updates.

In the NIR, the soil C balance model ICBM, developed at SLU is used to calculate SOC changes in mineral soils while estimated SOC changes in grasslands are based on soil sampling (NIR, 2022). As an indicator to be used for soil fertility, we suggest the SOC changes in cropland on mineral soils as reported in the NIR. From 2020, the annual change is reported as a three-year moving average. As a complement, updated data from the crop and soil monitoring could be used when available, see e.g. Henryson et al. (2022).

However, it is important to bear in mind that changes in soil organic carbon only capture partly what constitutes as soil fertility. Other aspects important to consider are e.g. soil compaction and phosphorus status.

3.5.2. Water management

Territorial-based indicator(s):

Area of Swedish cropland that is irrigated (thousands of ha)

Description: The amount of cropland that is equipped for being irrigated continuously or in case of drought. Here measured by the currently irrigated area.

Indicator:	Area of Swedish cropland that is irrigated (thousands of ha)
Indicator	T – 3.5.2a
label:	
Туре	S
according to	
DPSIR:	
Target:	Should correspond to the estimated water need (Mattsson,
	Andersson, et al., 2018)
Data	Jordbrukets strukturundersökning:
source:	https://data.europa.eu/data/datasets/arinrajid0ph6h0uozi8w?locale=sv

Area of cropland with access to sufficient water stored in the landscape (thousands of ha)

Description: The amount of cropland that has access to management of water resources to ensure sufficient water for the cultivation of crops (e.g. irrigation) and the management of excess water from e.g. heavy rainfall.

Indicator:	Area of cropland with access to sufficient water stored in	
	the landscape (thousands of ha)	
Indicator label:	T - 3.5.2b	
Type according to	S	
DPSIR:		
Target:	Not available	
Data source:	Not available	

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The ability to	Irrigated land is	Easy to	Aligned with
irrigate land,	measured regularly	understand and	policy. Policy can
through having	by the Board of	interpret.	stimulate action to
land equipped for	agriculture and	Quantitative and	improve on this
irrigation and	data is publicly	easy to	indicator through
enough water	available.	communicate.	different
resources in the			interventions, e.g.
landscape is	For T – 3.5.2b a		support in the CAP.
important for	data collection		Exact targets are a
coping with	methodology has to		bit unclear but the
droughts.	be developed.		direction is clear.

Percentage of cropland with acceptable drainage

Description: The management of excess water from e.g. heavy rainfall.

Indicator:	Percentage of cropland with acceptable drainage
Indicator label	T-3.5.2c
Type according to DPSIR:	S
Target:	Not available
Data source:	Measured by the Board of Agriculture through surveys,
	has been done 2013 and 2017 (Mattsson, Johansson, et al.,
	2018)

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
The percentage	Percentage of	Easy to	Aligned with
of cropland with	cropland with	understand and	policy. Policy can
acceptable	acceptable drainage	interpret.	stimulate action to
drainage is	is measured by	Quantitative and	improve on these
measured regularly	collecting data		indicators through

by the Board of	directly from	easy to	different
Agriculture and	farmers. For	communicate.	interventions, e.g.
data is publically	especially		support in the
available.	"acceptable" there		CAP. Exact targets
	is a measure of		are a bit unclear
	subjectivity		but the direction is
	involved, however,		clear.
	farmers are the		
	ones who can best		
	judge if the		
	drainage works.		

Background

This theme deals with the management of water resources to ensure enough water for the cultivation of crops (e.g. irrigation) and the management of excess water from e.g. heavy rainfall. The management of water resources in terms of sustainable removals is covered by indicator 3.3.2 Water use.

Water management is very relevant for maintaining the production capacity under climate change. In a changing climate droughts and floods will be become more frequent and severe (Pörtner *et al.*, 2022a). Most Swedish agricultural land is rain fed, but fruits, vegetables and roots are commonly irrigated. Out of total cropland however, only a small area of the total Swedish agricultural land is irrigated. Greater preparedness to be able to irrigate crops when needed has been brought forward as an important climate adaptation strategy (e.g. in the Strategic Plan for the CAP (GOS, 2022)). The Board of Agriculture monitors the area of irrigated land and makes data available for using the irrigated area as an indicator of how well water resources are managed.

Preparedness to irrigate involves having the necessary infrastructure in place (e.g. irrigation equipment) and maybe more importantly having access to water in the landscapes including lakes, streams, ponds, wetlands etc. (Jennie Barron, prof SLU, personal communication). In terms of infrastructure we used the currently irrigated land as an indicator. This does not fully capture the preparedness as there could be equipment available that is currently in use. As for water availability in the landscape this is not monitored currently and no methodology has been developed. However, we include this indicator here to highlight the importance of developing such an indicator.

Drainage of the Swedish agricultural land is in need of serious improvement. Climate change will place additional demands on drainage systems. Climate change affects the need for drainage through increased precipitation, less frost, longer growing season and longer dry periods. It is estimated that one fifth of the agricultural land is in need of drainage (Mattsson, Johansson, *et al.*, 2018). The drainage status is measured by the Board of Agriculture through surveys to farmers.

4. WALLS: The economy as a tool for sustainable food systems

A well-functioning economic system is central in a market-based and sustainable food system for several reasons. Firms need to be profitable over time to ensure continued production. To achieve this, firms need to simultaneously work to be calibrated with consumer demand and to ensure efficiency in their production processes. A wellfunctioning governance system needs to be in place to ensure that externalities of production are internalized into both firms' and consumers' rational decision-making. Many food system sustainability frameworks include themes and indicators of economic nature, but are typically not clear on the underlying rational for choosing those specific themes and indicators. For instance, the framework by Hebinck et al (2021) includes 'economically thriving, robust food value chains' to account for economic sustainability and introduces themes and indicators to assess this. While we used the suggestions from Hebinck et al. as an initial point for our selection of themes and indicators to consider economic sustainability, we went further and developed our framework based on central aspects that we claim must be in place for the economy in a sustainable food system. In particular, we argue that in a sustainable food system, the economic system should take the role of an enabler, or tool to achieve sustainability. This means that the role of the economic system in a sustainable food system, is articulated. Furthermore, this view on the economic system means that we can distinguish its role in relation to the other dimensions of a sustainable food system. For the economic system to function as a tool, or enabler of a sustainable food system, we argue that two central aspects need to be in place:

(1) A functioning governance system which ensures that the system is kept within the environmental foundations (this is the floor in our case), while delivering on the social goal of the system (this is the ceiling in our case). This means that the governance system is capable of fully handling the externalities of food production and consumption so that they are integrated into producers' and consumers' rational decision-making.

(2) That the operations by the food system firms can be ensured over time. This means that the firms need to run with a positive return over time and that they are resilient to disturbances regarding access to production inputs. Furthermore, to ensure that operations can be ensured over time, diversity in production is likely needed. Diversity in production implies that if one type of production fails due to poor production conditions, then other types of production may still continue. The stability of prices would be central to ensure

this over time. Price instability cannot totally be controlled by actors in the food system. However by taking precautions, strategies such as keeping a stock of essential production inputs or using strategies where inputs can be substituted with others in times of price instability, the overall inflation in the food system can at least to some extent be managed.

4.1. Economic wall 1: Governance

To assess the governance structure, we focus on the efficiency of policy and on actors' trust in policy. Efficiency in policy refers to how well policy succeeds in covering the aspects it should cover to internalize externalities. We focus on GHGs and biodiversity, and how well policy covers environmental pressures from the food system. For governance to work, actors must trust policy. We therefore also suggest to include measures in actors' trust in policy in our framework.

4.1.1 Efficient policy

Territorial-based indicator(s):

Share of greenhouse gas emissions from the Swedish food production system that are included in price based policies

Description: Priced GHG emissions from food production/ all GHG emissions from food production.

Indicator:	Share of greenhouse gas emissions from the Swedish food
	production system that are included in price based policies
Indicator label:	T – 4.1.1a
Type according to DPSIR:	R
Target:	All emissions should be priced
Data source:	Swedish Environmental Protection Agency for emission data
	and Statistic Sweden Environmental accounting for
	environmental taxes
	https://www.naturvardsverket.se/data-och-
	statistik/klimat/vaxthusgaser-utslapp-fran-arbetsmaskiner/
	https://www.naturvardsverket.se/data-och- statistik/klimat/vaxthusgaser-utslapp-fran-egen-uppvarmning- av-bostader-och-lokaler/
	https://www.naturvardsverket.se/data-och- statistik/klimat/vaxthusgaser-nettoutslapp-och-nettoupptag- fran-markanvandning/
	https://www.naturvardsverket.se/data-och-
	statistik/klimat/vaxthusgaser-utslapp-fran-jordbruk/

Relevant:	High-quality:	Interpretable:	Useful:
A large share of	A share of GHG	Easily	It is useful to
GHG that is	emissions from the	interpretable, are all	measure all GHGs
emitted when	food system that	production related	included in price
producing food, is	are included in	external effects	based schemes. By
not yet included in	price based	from GHG	including
any type of price	policies, is easy	emissions included	biological gases
based policy	enough to calculate	in policies, or not?	such as methane
scheme, such as	from current and		and nitrous oxides
emission taxes or	policy coverage		in price schemes,
trading system.	and emissions		which are currently
Including all	connected to the		excluded, not only
emissions from	food system.		are all relevant
both fossil fuels	Potential errors		climate impacts
and biological	can regard the		included but there
processes in price	measurement of		are also potential
based policy	biological gases.		synergies with
schemes would			other
include relevant	Sector divided		environmental
external effects in	emission levels are		pressures.
economic decision	presented yearly by		
making.	the Swedish		
	Environmental		
	Protection Agency,		
	official statistics,		
	climate.		

Justification for indicator choice:

Policies aiming at improving biodiversity

Description: Policies supporting an increase in biodiversity in the agricultural landscape.

Indicator:	Policies covering threatened species or ecosystems in	
	agricultural systems	
Indicator label:	T – 4.1.1b	
Type according to		
DPSIR:		
Target:	100%	
Data source:	Data not available. Own assessment is needed.	

Relevant:	High-quality:	Interpretable:	Useful:
All external	Potentially	Easily	It is useful to
effects should be	difficult to	interpretable.	measure how well
covered by policy	measure. In		policies cover
to ensure a	(Wenche <i>et al.,</i>		threatened species
functioning market	2020) 20% of 7400		or ecosystems that
for e.g. ecosystem	species connected		are used in the
services.	to the agricultural		agricultural
	landscape, are		systems, as it
	found to be		provides an
	threatened. Many		understanding
	are due to loss of		about the extent to
	open spaces and		which external
	grasslands, and		effects related to
	others are due to		biodiversity are
	eutrophication,		actually covered by
	climate change,		policy.
	invasive species		
	and ditches. To		
	cover how many of		
	these threatened		
	species are covered		
	by policy, is		
	difficult and time		
	consuming.		

Justification for indicator choice:

Policy objective achievement (%)

Description: Efficiency of policy in achieving its objectives.

Indicator:	Policy objective achievement (%)
Indicator label:	T – 4.1.1c
Type according to	R
DPSIR:	
Target:	As close to 100% as possible
Data source:	Data not available. Assessments can be based on
	literature review of policy objective achievement
	evaluations and on own assessment.

Relevant:	High-quality:	Interpretable:	Useful:
It is highly	This indicator is	Evaluation	It is necessary
relevant to evaluate the effect	potentially difficult	studies often	to evaluate the
of policy. If money	to calculate and	measures the	achievement of
is spent on	estimate even	percentage of	policy such that
measures that do	though evaluation	success, which can	money is used as
not give the	of policy after	be easily	efficiently as
targeted result,	implementation is	interpretable, even	possible
money that could	crucial.	though different	
have been used more efficiently is		studies might define	
wasted		success differently.	

Justification for indicator choice:

Consumption-based indicator(s):

Share of greenhouse gas emissions from Swedish food consumption that is included in price based policy

Description: Priced GHG emissions from food consumption/ all GHG emissions from food consumption

Indicator:	Share of greenhouse gas emissions from Swedish food	
	consumption that is included in price based policy	
Indicator label:	C – 4.1.1.d	
Type according	R	
to DPSIR:		
Target:	All emissions should be included	
Data source:	Total emissions from food consumption can be obtained from	
	the Swedish Environmental Protection Agency:	
	https://www.naturvardsverket.se/data-och-	
	statistik/konsumtion/vaxthusgaser-konsumtionsbaserade-utslapp-	
	per-person	
	Taxed domestic emissions – see territorial based indicator,	
	taxed imported emissions which can be combined with trade	
	channels that can be obtained from the Swedish board of	
	Agriculture	
	https://webbutiken.jordbruksverket.se/sv/artiklar/ra2211.html	
	and from FAOSTAT: https://www.fao.org/faostat/en/#data/TCL	
	Taxed agricultural emissions which can be found for OECD	
	countries in (OECD, 2020)	

Relevant:High-quality:Interpretable:Useful:GHG emittedThis indicatorEasilyAs a high sfrom importedhas the potential tointerpretable, are allof the foodfood products arebe difficult toconsumption relatedconsumed innot included inmonitor as foodexternal effectsSweden isprice based policy,emissionfrom GHGimported, it isunless parts ofmeasurements inemissions includeduseful to monemissions from theother countries canin policies, or not?how climate inuse of energy andbe difficult tocaused by Swedensweden	itor mpact edish
from importedhas the potential tointerpretable, are allof the foodfood products arebe difficult toconsumption relatedconsumed innot included inmonitor as foodexternal effectsSweden isprice based policy,emissionfrom GHGimported, it isunless parts ofmeasurements inemissions includeduseful to monemissions from theother countries canin policies, or not?how climate in	itor mpact edish
food products are not included inbe difficult to monitor as foodconsumption related external effectsconsumed in Sweden isprice based policy, unless parts of emissions from theemissionfrom GHGimported, it is useful to mon in policies, or not?	itor mpact edish
not included in price based policy, unless parts of emissions from themonitor as food emissionexternal effects from GHGSweden is imported, it is 	itor mpact edish
price based policy, unless parts of emissions from theemission neasurements in other countries canfrom GHG emissions included in policies, or not?imported, it is 	itor mpact edish
unless parts of emissions from themeasurements in other countries canemissions included in policies, or not?useful to mon how climate in	itor mpact edish
emissions from the other countries can in policies, or not? how climate in	mpact edish
1	edish
use of energy and be difficult to caused by Sw	
	S
fossil fuels are assess, and consumption i	
covered in accounting for priced. In add	
exporting countries already priced when all GHC	is are
regulation systems. emission sources priced, there a	re
The priced shares can cause high synergies to o	ther
of emissions are transaction costs. environmenta	l
however in general pressures, bot	h
low, as biological within and ou	tside
emissions from of Sweden.	
food are not	
covered anywhere	
globally (methane	
taxes for	
agriculture might	
be relevant in New	
Zeeland within a	
few years).	
Emissions	
connected to	
domestically	
produced food	
might be included	
in the domestic or	
EU policies,	
though as of today	
they only cover	
fossil fuels and	
energy related	
emissions.	

Justification for indicator choice:

Indicator:	Share of sugar consumption included in price based
	policy
Indicator label:	C – 4.1.1d
Type according to	R
DPSIR:	
Target:	All negative externalities should be included
Data source:	Not available as there is no tax on sugar in place

OECD, (2020) Description: Health related price policies

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
A high sugar	Such policies	Easy to interpret.	Useful to
intake can increase	are not in place,		measure the
the risk of	though if		internalization of
decreased health	implemented it		external effects in
and as such cause	should be straight		the economy.
costs both for	forward to estimate		
individuals and for	the share of sugar		
society. By pricing	intake that is		
these negative	priced.		
externa effects, the			
costs can decrease.			

Background

Governance and policy should theoretically aim to handle market failures. Negative external effects, mainly from production of food and the related effects on common goods, are some of the most prominent market failures that need to be addressed for food system sustainability.

Economic policies such as taxes or emission trading systems are economically efficient given that emission reduction is achieved at minimum cost, and participation is not voluntary. Taxation could be at consumption level such that imports are covered, or on the production level leading to increasing producer incentives to increase reduction efficiency (see any environmental economic textbook, such as Baumol and Oates (1988). Given large import levels, it is likely more efficient on the consumption side of the market such that competition possibilities for domestic producers are not reduced (see e.g. (Säll and Gren, 2015)Other regulatory frameworks can also be considered, such that policy makers enforce

abatement levels for producers and as such in principle forces emitters to pay for emission mitigation.

To date, the GHG emissions connected to agriculture are not priced in Sweden (or in any country) as emissions from machinery and energy use are accounted for under e.g. working machinery, and for heating premises. In the national accounting at The Swedish Environmental Protection Agency, close to 7 million tons of GHG emissions are emitted from agriculture, which only covers methane and nitrous dioxide (and a small part of CO2 from chalk appliances). Emissions from machinery and heating emit around 1 million tons additionally, and 3-4 million tons more are leaking from land use and land use change (LULUC) (How emissions are divided between the sectors are collected and presented by the Swedish Environmental Protection Agency climate reporting).

Current policies in Sweden thus only cover the 1 million tons from machinery and e.g. heating via carbon and energy taxes and the ETS when relevant. The additional 10-11 million tons of emissions arising from biological processes are not covered in any price policy (Statistics Sweden, www).

We include indicators for both production and consumption given that a large share of Swedish household diets and environmental pressure is based on imported food products (Swedish Board of Agriculture, 2021; Prince project, www). Territorial based price schemes cannot capture emissions created in other countries, and with only territorial based policy the competitiveness on the Swedish market would be disrupted. One way to capture emissions created in other countries can be to include Carbon Border Adjustment measures on imported products, there are however evidence that such measures cannot fully compensate for emission leakages (Arvanitopoulos, Garsous and Agnolucci, 2021; OECD, www).

Even though different price based policies such as taxes or trading systems in theory should reach more or less the same reduction levels, given the same price of e.g. emissions, they have different implications for the included actors. The INFORMAS framework (INFORMAS, 2023) highlights taxes as one of the most efficient policy regarding health issues, which is likely true. Though one should not discard trading systems if leakage effects can be dealt with, as this method is usually less costly for affected actors (Baumol and Oates, 1988)

All external effects could or should theoretically be priced separately (Baumol and Oates, 1988). However, given the difficulties of valuing and measuring for example loss of biodiversity, together with synergies between GHG emissions and other environmental pressures, taxing all GHGs could be a pragmatic way to move forward as the most GHG emitting output is also highly nutrient and land demanding (e.g. Moberg et al., 2020). A tax scheme/ emission trading system that includes biological GHGs thus capture the most emission intense productions and have potential to reduce nutrient and land usage, as well as the negative impact on biodiversity (Willett *et al.*, 2019; Einarsson *et al.*, 2022; Moberg *et al.*, 2020). We do however include policy for preserved biodiversity as an indicator as some of the most climate impacting food products are positive for biodiversity (grazing

animals on semi-natural pasture land) and to highlight the importance of addressing the rapidly decreasing loss of species. Climate change and biodiversity are also highly interlinked, and focusing on both simultaneously is important to ensure future food security (Pörtner *et al.*, 2021).

Good policy instruments are ideally cost efficient and fulfill targets. Dead weight losses (effects would have happened regardless of support, and losses due to e.g. environmental damage costs), substitution effects (both at the expense of other individuals or organizations, and in other regions) should be minimized. Additionally, transactional costs for implementation should be low and distributional effects considered. If these conditions are not met, there are likely better ways of governing change.

For example, Scown et al. (2020) show how CAP has been used and the extent to which objectives were achieved during the time period investigated. The authors find that spent CAP money increases income inequality and does little to promote production in a more climate and biodiverse manner. The results are supported by (FAO, 2021)) who show that even though EU-agriculture receives half of EU climate spending's via CAP, emissions from agriculture are not decreasing.

A common way to measure the effect of policy is the number of participants in programs, which might exclude the assessment on environmental improvements as the result of policy implementation.

Turning to health related price policies, negative external effects should be captured by policy. There are several components that could be included in a health related policy: saturated fats, salt or sugar for example. Saturated fats are however mainly from animal origin, and as such covered to some extent by the GHG pricing included above. Animal products have the highest environmental impact and thus the highest GHG price. Even though the GHG pricing would not target the health impacts of saturated fats, the policy should decrease intake. Salt is also difficult to price. Intake of salt is necessary, but becomes problematic when intake is too high. Sugar content on the other hand is taxed in around 85 countries, and as such a tested path of dealing with the external effects of intake of unhealthy foods (see overview in (WHO, 2022b)). In addition global sugar cane production account for 21% of total crop production globally, used for mainly discretionary foods (FAO, 2021) By taxing sugar, it is possible to capture both health related costs and decrease the acreages of land used for largely unnecessary consumption.

4.1.2 Trust in institutions

Territorial-based and consumption-based indicator(s):

Indicator:	Actor's trust in public institutions
Indicator label:	C-T – 4.1.2a
Type according to	R
DPSIR:	
Target:	Not available.
Data source:	Gothenburg University, (2023)

Description: Trust in institutions

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Actors' trust in	Trust is	The indicator is	The indicator is
validated research	generally	easy and intuitive to	highly relevant in
guides their	considered a latent	interpret.	considering the
willingness to	construct, meaning		needed transition
participate in	that it is not		of food systems.
sustainability	directly observable		
measures.	but has to be		
	measured through		
	indicators. There		
	are advanced		
	methods to do this		
	as well as to assess		
	the reliability of		
	the measures.		

Background

Efficient transition in food systems requires actors who are willing to participate in changing practices. Actors' trust in institutions would be instrumental for their willingness to participate in changing behavior aimed at the areas covered under the heading 'Clean and healthy planet'. In present times when "fake news" has become a well-known term, it is increasingly important for politicians and scientists to work to improve trust in scientific results and in institutions. Distrust in science makes it more difficult to improve sustainability in the food system as acceptance for policy and change might decrease. Also, actors' trust in governance would be instrumental for their willingness to participate in policy measures aimed at the areas covered under the heading 'Clean and healthy planet'.

Previous literature focused on the farmers' participation in agri-envronmental schemes has confirmed the role of trust in participation in policy measures (Polman and Slangen, 2008; Christensen *et al.*, 2011; Gatto, Mozzato and Defrancesco, 2019).

It would have been preferable to include food system actor's trust in food system policy, and food related institutions and science. However, as measures of trust in e.g. food related research and policy is limited to single research studies, it is difficult to access data that can be followed over time. We thus include the more commonly used indicator *Trust in institutions* (see e.g. OECD, 2022;(as a measure for the possibilities of coherence in the needed transformation process of the food system. Trust in public institutions in Sweden is continuously followed by the SOM-institute, allowing for time series data (see e.g. the SOM-Institute (Gothenburg University, 2023).

4.2 Economic wall 2: Economic enablers

An economically viable food system requires firms that can continue to produce over time. Their internal processes they need to generate economic value to the extent that the capital invested in the firms can grow. This means that firms need to make positive profits, at least over time. Moreover, the firms need to be autonomous to the extent that they can continue to produce even under circumstances where they might be cut off from the input supply market.

Indicators of economic viability are not well-consolidated in the food system sustainability literature. We therefore suggest to measure the economic viability of food system firms with the following three indicators: Returns to total (economic) capital, which assesses the ability of firms to generate returns to economic capital invested in them, through the processes on-firm which generates economic value. Autonomy, which assesses the extent to which firms are independent from external suppliers of production inputs. Finally, we suggest to consider diversity in production which is related to the resilience of the food system as such.

5.2.1. Returns to total economic capital

Territorial-based indicator(s):

Returns to total economic capital (%), average for food system firms in Sweden

Description: Returns to capital invested in firms assesses the profitability of firms in relation to the capital invested in them.

Indicator:	Returns to total economic capital (%), average for food system firms in Sweden	
Indicator label:	T – 4.2.1a	
Type according to	R	
DPSIR:		
Target:	Returns to capital should be larger than the opportunity	
	cost of the capital investment.	
Data source:	Statistics Sweden's business registrar:	
	https://www.scb.se/vara-tjanster/bestall-data-och-	
	statistik/foretagsregistret/	
	The Swedish Board of Agriculture, farm economic	
	survey: https://www.scb.se/en/finding-statistics/statistics-by-	
	subject-area/agriculture-forestry-and-fishery/agricultural-	
	economy/agricultural-economics-survey/	

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
Economic	It is	Easy and	Highly relevant
capital invested in	straightforward to	intuitive to interpret.	for assessing how
food system firms	calculate the return	Quantitative.	the economy
needs a return that	of economic capital	Reflects clearly how	functions as tool
is equal to or	invested in the food	stocks of economic	to achieve the
exceeds the	system firms. This	capital develops	goals of the food
opportunity cost of	is a well-established	over time.	system.
the capital	measure which is		
investment. Any	presented even in		
return below this	most text-books at		
threshold implies	undergraduate level.		
that economic			
capital is reduced			
over time.			

Consumption-based indicator(s):

Returns to total economic capital (%), average for food system firms which export food products to Sweden

Description: Returns to capital invested in firms assesses the profitability of firms in relation to the capital invested in them.

Indicator:	Returns to total economic capital (%), average for food system firms which export food products to Sweden
Indicator label:	T - 4.2.1b
Target:	Returns to capital should be larger than the opportunity
	cost of the capital investment.
Data source:	It is possible to use the farm accountancy data network for
	European agriculture: https://agriculture.ec.europa.eu/data-
	and-analysis/farm-structures-and-economics/fadn en
	For other firms, data availability is more problematic.

Indicator justification:

indicator justification.			
Relevant:	High-quality:	Interpretable:	Useful:
Economic	It is	Easy and	Highly relevant
capital invested in	straightforward to	intuitive to interpret.	for assessing how
food system firms	calculate the return	Quantitative.	the economy
needs a return that	of economic capital	Reflects clearly how	functions as tool
is equal to or	invested in the food	stocks of economic	to achieve the
exceeds the	system firms. This	capital develops	goals of the food
opportunity cost of	is a well-established	over time.	system.
the capital	measure which is		
investment. Any	presented even in		
return below this	most text-books at		
threshold implies	undergraduate level.		
that economic			
capital is reduced			
over time.			

Background

Returns to capital relates firm profit to the economic capital (total capital, including external loans or equity focusing only on the capital the owner(s) has invested in the firm, depending on which capital basis is considered). As such, the indicator returns to economic capital measures the percentage return of capital provided by the firm's investors. Any non-negative returns to capital indicate that the capital invested in the firm is at least not subject to de-growth, whereas negative returns to capital signals de-growth. Based on investment

theory, the lower limit for return to capital should be set at a level that covers the opportunity cost of capital and a risk premium corresponding to the riskiness of the investment (Ross, Westerfield and Jaffe, 2005).

In considering the capital basis, one can also extend the reasoning by including the natural capital. In this respect the literature talks about weak and strong sustainability (Ayres, van den Bergh and Gowdy, 2001; van den Bergh, 2010), and relates to whether there is a separation between the two types of capital in considering the returns to capital. In particular, weak sustainability considers the sum of the two types of capital whereas strong sustainability keeps each type of capital separate. Strong sustainability thus speaks in favor for separating between economic and natural capital in considering them. In this indicator framework, we opted not to use return of the natural capital as an indicator. The reason is that this would imply duplicating the type of sustainability concern that we measure with indicators to cover the theme 'A clean and healthy planet'.

Consumption based indicator: In principle we can assess the same type of indicator for firms that are involved in production of food products which are exported to Sweden when data are available for food system firms abroad.

4.2.2. Autonomy

Territorial-based indicator(s):

Value Added (VA) divided by Gross value of production (GVP), where (GVP = VA + C)where C=intermediate inputs + depreciation)

Description:	The degree of	dependence on	externally obtaine	d production factors.

Indicator:	Value Added (VA) divided by Gross value of production	
	(GVP), where $(GVP = VA + C$ where C=intermediate inputs	
	+ depreciation). Governmental income supports are excluded	
	from gross value of production.	
Indicator label:	T – 4.2.2a	
Type according to	S	
DPSIR:		
Target:	Not available	
Data source:	Statistics Sweden's business registrar:	
	https://www.scb.se/vara-tjanster/bestall-data-och-	
	statistik/foretagsregistret/	

Relevant:	High-quality:	Interpretable:	Useful:
Autonomy	Straightforward	Easy and	Highly
refers to the	to calculate based	intuitive to interpret,	relevant for
independence of	available data.	Quantitative.	assessing how the
firms, in terms of			economy
access to			functions as tool
production factors			to achieve the
needed to produce.			goals of the food
In terms of			system.
fluctuations in			
access to externally			
obtained			
production factors,			
firms with higher			
autonomy would			
be in better			
positions to			
continue to			
produce.			

Justification for indicator choice:

Value of production factors sourced from import market/total value of production factors

Description: The indicator assesses the extent to which firms are dependent on production factors sourced from import markets.

Indicator:	Value of production factors sourced from import	
	market/total value of production factors	
Indicator label:	T-4.2.2b	
Type according to	S	
DPSIR:		
Target:	Not available	
Data source:	Available for agriculture through the Farm Accounting	
	Data Network: https://agriculture.ec.europa.eu/data-and-	
	analysis/farm-structures-and-economics/fadn_en based on	
	assumptions about from where inputs are sourced.	

Relevant:	High-quality:	Interpretable:	Useful:
Externally	Straightforward	Easy and	Relevant for
sourced production	to calculate based	intuitive to	assessing the risk
factors implies a	available data.	interpret,	that adverse
risk that averse		Quantitative.	environmental
environmental		Indicates the risk of	effects are
effects are		contributing to	'outsourced' to
'outsourced' to		adverse	other countries.
other countries and		environmental	Nevertheless it
thus not being		impact abroad.	should of course
accounted for			be noted that
based on territorial			imported
measures. This			production factors
indicator gives an			may come from
overview of the			clean production
risk of			conditions and this
'outsourcing'			indicator should be
adverse			interpreted only as
environmental			a <i>risk</i> of
effects to other			outsources
countries.			environmental
			impacts.

Indicator justification:

Consumption based indicator(s)

NA.

Background

Dependence on externally obtained production factors (e.g. fertilizers, fuels and pesticides) is inevitable in most firms and in cases of stable and certain inflow of such production factors it can also be desirable. Indeed, the business strategies to outsource production of production factors has allowed firms to focus on their core specializations and concepts such as just-in-time has been developed to reduce the amount of capital tied to the storage of production factors. Still, such strategies can put firms at risk in times of crises where steady supply may no longer be guaranteed. They can also imply significant price risks to firms in times where prices are fluctuating. Hence, we argue that a heavy dependence on externally obtained production factors can put firms' abilities to continue to produce at risk and that it is reasonable to consider firms' autonomy in evaluating their ability to continue to produce. The suggested indicator considers the value added by firms divided by the gross value of production. The difference between the two measures are the intermediate inputs

and depreciation. If firms purchase a large share of intermediate inputs, the ratio will be lower and vice versa.

Dependence on production factors sourced from import markets implies a risk that adverse environmental effects are 'outsourced' to other markets. The suggested indicator should be used as a measure of risk and carefully evaluated to follow up on whether there is a real transfer of negative environmental impacts to other territories.

5.2.3 Diversity in production

Territorial-based indicator(s):

Entropy index

Indicator:	Entropy index
Indicator label:	T – 4.2.3a
Type according to	S
DPSIR:	
Target:	Not available.
Data source:	The indicator can be calculated based on data from the
	Swedish Business Register by Statistics Sweden:
	https://www.scb.se/en/services/ordering-data-and-
	statistics/statistics-swedens-business-register/

Description: The indicator measures unrelated variety in food system firms

Justification for indicator choice:

Relevant:	High-quality:	Interpretable:	Useful:
An entropy	The entropy	The entropy	The entropy
index for unrelated	index can be used	index is easy to	index of unrelated
variety in	through information	calculate and to	variety is highly
agricultural firms	about farms' type	interpret.	relevant to
highlights diversity	of specialization.		measure and
in agricultural	These data are		evaluate the
production	collected by the		diversity among
	Swedish Board of		agricultural firms,
	Agriculture and exit		by taking the focus
	at a yearly basis.		from between the
			farms.

Background

From a resilience perspective, diversity among firms can be considered as an insurance against the loss of food products under unfavorable conditions. Consider for instance a growing season with unfavorable weather conditions for one type of crop. In a diversified agricultural sector there are other types of production, specialized in other types of produce that may still be able to produce under those conditions. Research has also shown that variety among firms can function as a counterforce against the unemployment in the area (Frenken, Van Oort and Verburg, 2007) and that agricultural production can improve its efficiency by diversification (Hansson, 2007; Nilsson *et al.*, 2022). Looking at the agricultural sector, there are also agronomic and ecological benefits from diversified agricultural production.

Consumption based indicator:

NA

References

- Aizen, M.A. *et al.* (2019) 'Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification', *Global Change Biology*, 25(10), pp. 3516–3527. Available at: https://doi.org/10.1111/gcb.14736.
- Aldaya, M.M. et al. (2012) The Water Footprint Assessment Manual. 0 edn. Routledge. Available at: https://doi.org/10.4324/9781849775526.
- Arvanitopoulos, T., Garsous, G. and Agnolucci, P. (2021) *Carbon leakage and agriculture: A literature review on emissions mitigation policies*. Paris: OECD. Available at: https://doi.org/10.1787/9247f1e7-en.
- Ayres, R., van den Bergh, J. and Gowdy, J. (2001) 'Strong versus Weak Sustainability: Economics, Natural Sciences, and Consilience', *Environmental ethics*, 23, pp. 155–168. Available at: https://doi.org/10.5840/enviroethics200123225.
- Baumol, W.J. and Oates, W.E. (1988) *The Theory of Environmental Policy*. 2nd edn. Cambridge: Cambridge University Press. Available at: https://doi.org/10.1017/CBO9781139173513.
- Béné, C. et al. (2019) 'Global map and indicators of food system sustainability', Scientific Data, 6(1), p. 279. Available at: https://doi.org/10.1038/s41597-019-0301-5.
- Bengtsson, J. *et al.* (2019) 'Grasslands—more important for ecosystem services than you might think', *Ecosphere*, 10(2), p. e02582. Available at: https://doi.org/10.1002/ecs2.2582.
- van den Bergh, J.C.J.M. (2010) 'Externality or sustainability economics?', *Ecological Economics*, 69(11), pp. 2047–2052. Available at: https://doi.org/10.1016/j.ecolecon.2010.02.009.
- Bianchi, M. et al. (2020) 'Systematic Evaluation of Nutrition Indicators for Use within Food LCA Studies', Sustainability, 12(21), p. 8992. Available at: https://doi.org/10.3390/su12218992.
- Borthwick, L., Bergman, K. and Ziegler, F. (2019) *Svensk konsumtion av sjömat*. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-38332 (Accessed: 14 March 2023).
- Boulay, A.-M. et al. (2018) 'The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE)', *The International Journal of Life Cycle Assessment*, 23(2), pp. 368–378. Available at: https://doi.org/10.1007/s11367-017-1333-8.
- Bullock, J.M. *et al.* (2017) 'Resilience and food security: rethinking an ecological concept', *Journal of Ecology*, 105(4), pp. 880–884. Available at: https://doi.org/10.1111/1365-2745.12791.
- Bünemann, E.K. et al. (2018) 'Soil quality A critical review', Soil Biology and Biochemistry, 120, pp. 105–125. Available at: https://doi.org/10.1016/j.soilbio.2018.01.030.
- Cassidy, E.S. *et al.* (2013) 'Redefining agricultural yields: from tonnes to people nourished per hectare', *Environmental Research Letters*, 8(3), p. 034015. Available at: https://doi.org/10.1088/1748-9326/8/3/034015.
- Cederberg, C. *et al.* (2019) 'Beyond the borders burdens of Swedish food consumption due to agrochemicals, greenhouse gases and land-use change', *Journal of Cleaner*

Production, 214, pp. 644–652. Available at: https://doi.org/10.1016/j.jclepro.2018.12.313.

- Chaudhary, A. and Brooks, T.M. (2018) 'Land Use Intensity-Specific Global Characterization Factors to Assess Product Biodiversity Footprints', *Environmental Science & Technology*, 52(9), pp. 5094–5104. Available at: https://doi.org/10.1021/acs.est.7b05570.
- Chaudhary, A., Gustafson, D. and Mathys, A. (2018) 'Multi-indicator sustainability assessment of global food systems', *Nature Communications*, 9(1), p. 848. Available at: https://doi.org/10.1038/s41467-018-03308-7.
- Cheng, X. et al. (2019) 'Evaluation of cultural ecosystem services : a review of methods',ECOSYSTEMSERVICES,37.Availableat:https://doi.org/10.1016/j.ecoser.2019.100925.
- Chrenek, P., Kubovičová, E. and Alexander Makarevich (2021) 'PROTECTION AND SUSTAINABILITY OF ANIMAL GENETIC RESOURCES FOR ENSURING THE PRODUCTION OF QUALITY DOMESTIC FOOD', Journal of Microbiology, Biotechnology and Food Sciences, 2021(vol. 10), pp. 239–241.
- Christensen, T. *et al.* (2011) 'Determinants of farmers' willingness to participate in subsidy schemes for pesticide-free buffer zones—A choice experiment study', *Ecological Economics*, 70(8), pp. 1558–1564. Available at: https://doi.org/10.1016/j.ecolecon.2011.03.021.
- Clapp, J. (2021) 'The problem with growing corporate concentration and power in the global food system', *Nature Food*, 2(6), pp. 404–408. Available at: https://doi.org/10.1038/s43016-021-00297-7.
- Clark, M.A. *et al.* (2020) 'Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets', *Science*, 370(6517), pp. 705–708. Available at: https://doi.org/10.1126/science.aba7357.
- Crippa, M. *et al.* (2021) 'Food systems are responsible for a third of global anthropogenic GHG emissions', *Nature Food*, 2(3), pp. 198–209. Available at: https://doi.org/10.1038/s43016-021-00225-9.
- Curran, M. *et al.* (2016) 'How Well Does LCA Model Land Use Impacts on Biodiversity?--A Comparison with Approaches from Ecology and Conservation', *Environmental Science & Technology*, 50(6), pp. 2782–2795. Available at: https://doi.org/10.1021/acs.est.5b04681.
- Dempewolf, H. *et al.* (2017) 'Past and Future Use of Wild Relatives in Crop Breeding', *Crop Science*, 57(3), pp. 1070–1082. Available at: https://doi.org/10.2135/cropsci2016.10.0885.
- Drake, I. *et al.* (2011) 'Development of a diet quality index assessing adherence to the Swedish nutrition recommendations and dietary guidelines in the Malmö Diet and Cancer cohort', *Public Health Nutrition*, 14(5), pp. 835–845. Available at: https://doi.org/10.1017/S1368980010003848.
- Dramstad, W.E. *et al.* (2006) 'Relationships between visual landscape preferences and map-based indicators of landscape structure', *Landscape and Urban Planning*, 78(4), pp. 465–474. Available at: https://doi.org/10.1016/j.landurbplan.2005.12.006.
- Dronova, I. (2017) 'Environmental heterogeneity as a bridge between ecosystem service and visual quality objectives in management, planning and design', *Landscape and Urban Planning*, 163, pp. 90–106. Available at: https://doi.org/10.1016/j.landurbplan.2017.03.005.
- Eide, W. *et al.* (2014) Arter & naturtyper i habitatdirektivet bevarandestatus i Sverige 2013. SLU Artdatabanken. Available at: https://www.artdatabanken.se/publikationer/arter--naturtyper-i-habitatdirektivet-bevarandestatus-i-sverige-2013/ (Accessed: 21 February 2023).
- Ekologiska lantbrukarna, Ekomatcentrum and Organic Sweden (2022) *Ekologiska årsrapporten* 2021. Available at: https://files.ecommercedns.uk/239561/cdc55161f9dbfc0e553911832b908e88.pdf.

- Eshel, G. et al. (2014) 'Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States', Proceedings of the National Academy of Sciences of the United States of America, 111(33), pp. 11996–12001. Available at: https://doi.org/10.1073/pnas.1402183111.
- European Commission (2020a) *Biodiversity strategy for 2030, European Commission.* Available at: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (Accessed: 21 February 2023).
- European Commission (2020b) *Farm to Fork Strategy*. Available at: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (Accessed: 15 December 2022).
- Fanzo, J. *et al.* (2021) 'Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals', *Food Policy*, 104, p. 102163. Available at: https://doi.org/10.1016/j.foodpol.2021.102163.
- FAO (2021) World Food and Agriculture Statistical Yearbook 2021. Rome, Italy: FAO. Available at: https://doi.org/10.4060/cb4477en.
- FAO (2022) FAO Term Portal, Food and Agrilcutre Organization. Available at: https://www.fao.org/faoterm/viewentry/en/?entryId=9939. (Accessed: 21 February 2023).
- Farm Animal Welfare Council (1993) Second Report on Priorities for Research and Development in Farm Animal Welfare. London, UK: DEFRA.
- Frenken, K., Van Oort, F. and Verburg, T. (2007) 'Related Variety, Unrelated Variety and Regional Economic Growth', *Regional Studies*, 41(5), pp. 685–697. Available at: https://doi.org/10.1080/00343400601120296.
- Frisk, M. and Stadin, E. (2016) Behövs ersättningar till jordbrukare för skötsel av kulturmiljöer? : En utvärdering av miljöersättningen till natur- och kulturmiljöer i Sveriges landsbygdsprogram 2007-2013. Riksantikvarieämbetet. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:raa:diva-3448 (Accessed: 12 December 2022).
- Gatto, P., Mozzato, D. and Defrancesco, E. (2019) 'Analysing the role of factors affecting farmers' decisions to continue with agri-environmental schemes from a temporal perspective', *Environmental Science & Policy*, 92, pp. 237–244. Available at: https://doi.org/10.1016/j.envsci.2018.12.001.
- GBD 2019 Risk Factors Collaborators (2020) 'Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019', *Lancet (London, England)*, 396(10258), pp. 1223–1249. Available at: https://doi.org/10.1016/S0140-6736(20)30752-2.
- Gothenburg University (2023) *SOM-institutet, Göteborgs universitet.* Available at: https://www.gu.se/som-institutet (Accessed: 23 February 2023).
- Green, M., Haas, F. and Lindström, Å. (no date) 'Övervakning av fåglarnas populationsutveckling Årsrapport för 202', p. 88.
- Gustafsson, S. and Nord, M. (2010) *Bevara, nyttja och utveckla handlingsplan för uthållig förvaltning av svenska husdjursraser 2010-2020.* 2010:14. Jordbruksverket. Available at: https://webbutiken.jordbruksverket.se/sv/artiklar/bevara-nyttja-och-utveckla.html (Accessed: 12 December 2022).
- Hansson, H. (2007) 'Strategy factors as drivers and restraints on dairy farm performance: Evidence from Sweden', *Agricultural Systems*, 94(3). Available at: https://doi.org/10.1016/j.agsy.2007.03.002.
- Hansson, H. et al. (2023) 'An indicator framework to guide food system sustainability transition the case of Sweden'. SLU, unpublished draft.
- Harris, S. *et al.* (2021) *The Breeding Bird Survey 2020.* Thetford: British Trust for Ornithology. Available at: https://www.bto.org/our-science/publications/breeding-bird-survey-report/breeding-bird-survey-2020 (Accessed: 12 December 2022).
- Hasund, K.P., Kataria, M. and Lagerkvist, C.J. (2011) 'Valuing public goods of the agricultural landscape: a choice experiment using reference points to capture

observable heterogeneity', *Journal of Environmental Planning and Management*, 54(1), pp. 31–53. Available at: https://doi.org/10.1080/09640568.2010.502753.

- Hebinck, A. *et al.* (2021) 'A Sustainability Compass for policy navigation to sustainable food systems', *Global Food Security*, 29, p. 100546. Available at: https://doi.org/10.1016/j.gfs.2021.100546.
- Hellsten, S. (2017) *Ammonia emissions in Sweden*. IVL Svenska Miljöinstitutet. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:ivl:diva-266 (Accessed: 12 December 2022).
- Henryson, K. *et al.* (2022) 'Higher carbon sequestration on Swedish dairy farms compared with other farm types as revealed by national soil inventories', *Carbon Management*, 13(1), pp. 266–278. Available at: https://doi.org/10.1080/17583004.2022.2074315.
- Hermes, J. et al. (2018) 'Assessment and valuation of recreational ecosystem services of landscapes', *Ecosystem services*, 31, p. 289. Available at: https://doi.org/10.1016/j.ecoser.2018.04.011.
- Hess, T. *et al.* (2015) 'The impact of healthier dietary scenarios on the global blue water scarcity footprint of food consumption in the UK', *Food Policy*, 50, pp. 1–10. Available at: https://doi.org/10.1016/j.foodpol.2014.10.013.
- Hoekstra, A.Y. (2016) 'A critique on the water-scarcity weighted water footprint in LCA', *Ecological Indicators*, 66, pp. 564–573. Available at: https://doi.org/10.1016/j.ecolind.2016.02.026.
- Hornborg, S., Bergman, K. and Ziegler, F. (2021) *Svensk konsumtion av sjömat*. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-56764 (Accessed: 14 March 2023).
- Hu, Y.J. and Cowling, B.J. (2020) 'Reducing antibiotic use in livestock, China', *Bulletin* of the World Health Organization, 98(5), pp. 360–361. Available at: https://doi.org/10.2471/BLT.19.243501.
- INFORMAS (2023) *Public Sector Policies and Actions (Food-EPI), INFORMAS.* Available at: https://www.informas.org/modules/public-sector/.
- International Labour Organisation (2021) *Child Labour: Global estimates 2020, trends and the road forward - Executive Summary.* Report. Available at: http://www.ilo.org/ipec/Informationresources/WCMS_800278/lang-en/index.htm (Accessed: 3 March 2023).
- International Labour Organization (2017) *Relevant SDG Targets related to Child Labour*. Available at: http://www.ilo.org/global/topics/dw4sd/themes/child-labour/WCMS_559713/lang--en/index.htm (Accessed: 7 March 2023).
- IPBES (2019) Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Zenodo. Available at: https://doi.org/10.5281/zenodo.6417333.
- Karlsson, J.O., Tidåker, P. and Röös, E. (2022) 'Smaller farm size and ruminant animals are associated with increased supply of non-provisioning ecosystem services', *Ambio*, 51(9), pp. 2025–2042. Available at: https://doi.org/10.1007/s13280-022-01726-y.
- Kastner, T. et al. (2012) 'Global changes in diets and the consequences for land requirements for food', *Proceedings of the National Academy of Sciences of the United States of America*, 109(18), pp. 6868–6872. Available at: https://doi.org/10.1073/pnas.1117054109.
- Keeling, L. et al. (2019) 'Animal Welfare and the United Nations Sustainable Development Goals', Frontiers in Veterinary Science, 6. Available at: https://www.frontiersin.org/articles/10.3389/fvets.2019.00336 (Accessed: 9 February 2023).
- Koellner, T. et al. (2013) 'UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA', *The International Journal of Life Cycle Assessment*, 18(6), pp. 1188–1202. Available at: https://doi.org/10.1007/s11367-013-0579-z.

Kristensen, P. (2004) 'The DPSIR framework'. European Environmental Agency, Copenhagen.

- Kumm, K.-I. (2017) *Naturbetesmarkernas värden och bevarande*. Länsstyrelsen i Västra Götalands län, landsbygdsavdelningen.
- Kummu, M. *et al.* (2020) 'Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency', *Global Food Security*, 24, p. 100360. Available at: https://doi.org/10.1016/j.gfs.2020.100360.
- Landquist, B. et al. (2019) Underlag för uppdatering av IP-standardens klimatmodul för klimatcertifiering. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-43257 (Accessed: 14 March 2023).
- Langhans, C. *et al.* (2022) 'Phosphorus for Sustainable Development Goal target of doubling smallholder productivity', *Nature Sustainability*, 5(1), pp. 57–63. Available at: https://doi.org/10.1038/s41893-021-00794-4.
- Last, L. *et al.* (2014) 'Indicators for the on-farm assessment of crop cultivar and livestock breed diversity: a survey-based participatory approach', *Biodiversity and Conservation*, 23(12), pp. 3051–3071. Available at: https://doi.org/10.1007/s10531-014-0763-x.
- Laurance, W.F., Sayer, J. and Cassman, K.G. (2014) 'Agricultural expansion and its impacts on tropical nature', *Trends in Ecology & Evolution*, 29(2), pp. 107–116. Available at: https://doi.org/10.1016/j.tree.2013.12.001.
- Lemming, E.W. and Pitsi, T. (2022) 'The Nordic Nutrition Recommendations 2022 food consumption and nutrient intake in the adult population of the Nordic and Baltic countries', *Food & Nutrition Research*, 66. Available at: https://doi.org/10.29219/fnr.v66.8572.
- Leroy, G. *et al.* (2018) 'Animal genetic resources diversity and ecosystem services', *Global Food Security*, 17, pp. 84–91. Available at: https://doi.org/10.1016/j.gfs.2018.04.003.
- Markensten, T. *et al.* (2018) *Hur kan den svenska jordbrukssektorn bidra till att vi når det nationella klimatmålet?* 18:1. Swedish Board of Agriculture. Available at: https://webbutiken.jordbruksverket.se/sv/artiklar/ra181.html (Accessed: 21 February 2023).
- Masson-Delmotte, V. et al. (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Available at: https://doi.org/10.1017/9781009157896.
- Mattsson, E., Johansson, T., *et al.* (2018) *Avvattning av jordbruksmark i ett förändrat klimat.* 18:19. Swedish Board of Agriculture. Available at: https://webbutiken.jordbruksverket.se/sv/artiklar/ra18_19.html (Accessed: 21 February 2023).
- Mattsson, E., Andersson, J., *et al.* (2018) *Jordbrukets behov av vattenförsörjning.* 18:18. Swedish Board of Agriculture. Available at: https://webbutiken.jordbruksverket.se/sv/artiklar/ra18_18.html (Accessed: 21 February 2023).
- Meier, T. *et al.* (2014) 'Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example', *Appetite*, 74, pp. 20–34. Available at: https://doi.org/10.1016/j.appet.2013.11.006.
- Milà i Canals, L., Romanyà, J. and Cowell, S.J. (2007) 'Method for assessing impacts on life support functions (LSF) related to the use of "fertile land" in Life Cycle Assessment (LCA)', *Journal of Cleaner Production*, 15(15), pp. 1426–1440. Available at: https://doi.org/10.1016/j.jclepro.2006.05.005.
- Milcu, A. *et al.* (2013) 'Cultural Ecosystem Services: A Literature Review and Prospects for Future Research', *Ecology and Society*, 18(3). Available at: https://doi.org/10.5751/ES-05790-180344.

- Moberg, E. *et al.* (2020) 'Benchmarking the Swedish Diet Relative to Global and National Environmental Targets—Identification of Indicator Limitations and Data Gaps', *Sustainability*, 12(4), p. 1407. Available at: https://doi.org/10.3390/su12041407.
- Mottet, A. *et al.* (2017) 'Livestock: On our plates or eating at our table? A new analysis of the feed/food debate', *Global Food Security*, 14, pp. 1–8. Available at: https://doi.org/10.1016/j.gfs.2017.01.001.
- Moussy, C. *et al.* (2022) 'A quantitative global review of species population monitoring', *Conservation Biology*, 36(1), p. e13721. Available at: https://doi.org/10.1111/cobi.13721.
- National Board of Health and Welfare (2013) Salmonella ett nationellt strategidokument. The Public Health Agency of Sweden. Available at: https://www.folkhalsomyndigheten.se/publikationer-ochmaterial/publikationsarkiv/s/salmonella-ett-nationellt-strategidokument/ (Accessed: 21 February 2023).
- National Board of Health and Welfare (2014) *Infektion med EHEC/VTEC ett nationellt strategidokument*. The Public Health Agency of Sweden. Available at: https://www.folkhalsomyndigheten.se/publikationer-ochmaterial/publikationsarkiv/i/infektion-med-ehecvtec-ett-nationelltstrategidokument/ (Accessed: 21 February 2023).
- Naturvårdsverket (no date) Konventionen om biologisk mångfald (CBD). Available at: https://www.naturvardsverket.se/om-miljoarbetet/internationelltmiljoarbete/internationella-miljokonventioner/konventionen-om-biologiskmangfald-cbd/ (Accessed: 9 January 2023).
- NCM (2014) Nordic Nutrition Recommendations 2012 Integrating nutrition and physical activity. The Nordic Council and Nordic Council of Ministers. Available at: https://doi.org/10.6027/Nord2014-002.
- Nilsson, P. *et al.* (2022) 'Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms', *Ecological Economics*, 198, p. 107465. Available at: https://doi.org/10.1016/j.ecolecon.2022.107465.
- OECD (2020) *Taxation in Agriculture*. Paris: Organisation for Economic Co-operation and Development. Available at: https://www.oecd-ilibrary.org/agriculture-and-food/taxation-in-agriculture_073bdf99-en (Accessed: 7 March 2023).
- OECD (2022) Building Trust to Reinforce Democracy: Main Findings from the 2021 OECD Survey on Drivers of Trust in Public Institutions. Paris: Organisation for Economic Co-operation and Development. Available at: https://www.oecdilibrary.org/governance/building-trust-to-reinforce-democracy_b407f99c-en (Accessed: 5 January 2023).
- OECD (no date) *Meat consumption | Agricultural output | OECD iLibrary*. Available at: https://www.oecd-ilibrary.org/agriculture-and-food/meatconsumption/indicator/english_fa290fd0-en (Accessed: 9 January 2023).
- O'Leary, B.C. et al. (2016) 'Effective Coverage Targets for Ocean Protection', Conservation Letters, 9(6), pp. 398–404. Available at: https://doi.org/10.1111/conl.12247.
- Pendrill, F. *et al.* (2022) 'Deforestation risk embodied in production and consumption of agricultural and forestry commodities 2005-2018'. Zenodo. Available at: https://doi.org/10.5281/zenodo.5886600.
- Pires, S.M. *et al.* (2021) 'Burden of foodborne diseases: think global, act local', *Current Opinion in Food Science*, 39, pp. 152–159. Available at: https://doi.org/10.1016/j.cofs.2021.01.006.
- Polman, N.B.P. and Slangen, L.H.G. (2008) 'Institutional design of agri-environmental contracts in the European Union: the role of trust and social capital', *NJAS: Wageningen Journal of Life Sciences*, 55(4), pp. 413–430. Available at: https://doi.org/10.1016/S1573-5214(08)80029-2.

- Poore, J. and Nemecek, T. (2018) 'Reducing food's environmental impacts through producers and consumers', *Science*, 360(6392), pp. 987–992. Available at: https://doi.org/10.1126/science.aaq0216.
- Pörtner, H.-O. *et al.* (2021) *Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change.* Zenodo. Available at: https://doi.org/10.5281/zenodo.5101125.
- Pörtner, H.-O. et al. (2022a) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC.
- Pörtner, H.-O. et al. (2022b) Summary for policymakers. Cambridge University Press.
- Powney, G.D. et al. (2019) 'Widespread losses of pollinating insects in Britain', Nature Communications, 10(1), p. 1018. Available at: https://doi.org/10.1038/s41467-019-08974-9.
- Prince project (no date) *Greenhouse gases, Water, Materials, Land, Energy, Sei Prince.* Available at: https://www.prince-project.se/footprinting-results/ (Accessed: 2 January 2023).
- Rabello, R.F. *et al.* (2020) 'Antimicrobial Resistance in Farm Animals in Brazil: An Update Overview', *Animals*, 10(4), p. 552. Available at: https://doi.org/10.3390/ani10040552.
- Raven, P.H. and Wagner, D.L. (2021) 'Agricultural intensification and climate change are rapidly decreasing insect biodiversity', *Proceedings of the National Academy of Sciences*, 118(2), p. e2002548117. Available at: https://doi.org/10.1073/pnas.2002548117.
- Regeringskansliet, R. och (2015) En livsmedelsstrategi för jobb och hållbar tillväxt i hela landet, Regeringskansliet. Regeringen och Regeringskansliet. Available at: https://www.regeringen.se/regeringens-politik/en-livsmedelsstrategi-for-jobboch-hallbar-tillvaxt-i-hela-landet/ (Accessed: 5 January 2023).
- Resare Sahlin, K. *et al.* (2023) 'Exploring a biodiversity boundary for livestock quantifying the potential production and consumption of meat and dairy from the world's grazing lands'. SLU, unpublished draft.
- Ridoutt, B.G. and Pfister, S. (2010) 'A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity', *Global Environmental Change*, 20(1), pp. 113–120. Available at: https://doi.org/10.1016/j.gloenvcha.2009.08.003.
- Ross, S.A., Westerfield, R.W. and Jaffe, J. (2005) *Corporate Finance*. 7th edn. Singapore: McGraw-Hill.
- Säll, S. and Gren, I.-M. (2015) 'Effects of an environmental tax on meat and dairy consumption in Sweden', *Food Policy*, 55, pp. 41–53. Available at: https://doi.org/10.1016/j.foodpol.2015.05.008.
- Sametinget (2022) *Rennäringen i Sverige*, *Sametinget*. Available at: https://www.sametinget.se/rennaring_sverige (Accessed: 21 February 2023).
- Schmeller, D.S., Courchamp, F. and Killeen, G. (2020) 'Biodiversity loss, emerging pathogens and human health risks', *Biodiversity and Conservation*, 29(11), pp. 3095–3102. Available at: https://doi.org/10.1007/s10531-020-02021-6.
- Sejian, V. *et al.* (2019) 'Genes for resilience to heat stress in small ruminants: A review', *Small Ruminant Research*, 173, pp. 42–53. Available at: https://doi.org/10.1016/j.smallrumres.2019.02.009.
- SFA (2018) *Riksmaten ungdom.* 14. Swedish Food Agency. Available at: https://www.livsmedelsverket.se/matvanor-halsa--miljo/matvanor---undersokningar/riksmaten-ungdom (Accessed: 21 February 2023).
- SFA (2019) Sjukdomsbördan av inhemska fall av matförgiftning, smittskyddsunderlag del 1. 2019:2. Swedish Food Agency. Available at: https://www.livsmedelsverket.se/om-oss/publikationer/sok-

publikationer/artiklar/2019/l-2019-nr-02-sjukdomsbordan-av-inhemska-fall-av-

matforgiftning-smittskyddsunderlag-del-1-livsmedelsverkets-rapportserie (Accessed: 2 November 2023).

- SFA (2021a) Kunskapsunderlag med förslag på mål och indikatorer som styr mot miljömässigt-, socialt- och ekonomiskt hållbar livsmedelskonsumtion. 2021:17. Swedish Food Agency. Available at: https://www.livsmedelsverket.se/omoss/publikationer/sok-publikationer/artiklar/2021/kunskapsunderlag-med-forslagpa-mal-och-indikatorer-som-styr-mot-miljomassigt-socialt-och-ekonomiskthallbar-livsmedelskonsumtion (Accessed: 21 February 2023).
- SFA (2021b) Rapporterade misstänkta matförgiftningar 2020. 2021:23. Swedish Food Aegncy. Available at: https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2021 /l-2021-nr-23-rapporterade-misstankta-matforgiftningar-2020.pdf?siteid:67f9c486-281d-4765-ba72-ba3914739e3b (Accessed: 28 September 2022).
- SFA (2022a) Kostråden hitta ditt sätt, Swedish Food Agency. Available at: https://www.livsmedelsverket.se/matvanor-halsa--miljo/kostrad/rad-om-bra-mat-hitta-ditt-satt (Accessed: 6 June 2022).
- SFA (2022b) *Riksmaten vuxna 2010-11. Livsmedels- och näringsintag bland vuxna i Sverige.* Swedish Food Agency. Available at: https://www.livsmedelsverket.se/globalassets/publikationsdatabas/rapporter/2011 /riksmaten_2010_20111.pdf?id=3588.
- Stadler, K. et al. (2018) 'EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables', Journal of Industrial Ecology, 22(3), pp. 502–515. Available at: https://doi.org/10.1111/jiec.12715.
- Statista (2022) *Global phosphate fertilizer consumption by country, Statista*. Available at: https://www.statista.com/statistics/1252669/phosphate-fertilizer-consumption-worldwide-by-country/ (Accessed: 21 February 2023).

Statistics Sweden (2016) Monitoring the shift to sustainable consumption patterns and production – in the context of the SDGs, Statistics Sweden. Available at: https://www.scb.se/en/finding-statistics/statistics-by-subject-area/environment/environmental-accounts-and-sustainable-development/system-of-environmental-and-economic-accounts/pong/publications/monitoring-the-shift-to-sustainable-consumption-patterns-and-production--in-the-context-of-the-sdgs/ (Accessed: 21 February 2023).

Statistics Sweden (2021a) Industrins vattenanvändning 2020 Uttag, användning och utsläpp av vatten i industrisektorn. Statistics Sweden. Available at: https://www.scb.se/hitta-statistik/statistik-efter-

amne/miljo/vattenanvandning/vattenuttag-och-vattenanvandning-i-

sverige/pong/publikationer/industrins-vattenanvandning-2020-uttag-anvandning-och-utslapp-av-vatten-i-industrisektorn/ (Accessed: 21 February 2023).

Statistics Sweden (2021b) Nitrogen and phosphorus balances for agricultural land in 2019. Statistics Sweden. Available at: https://www.scb.se/en/finding-statistics/statistics-by-subject-area/environment/fertilisers-and-lime/nitrogen-and-phosphorus-balances-for-agricultural-land-and-agricultural-

sector/pong/publications/nitrogen-and-phosphorus-balances-for-agricultural-landin-2019/ (Accessed: 12 December 2022).

- Statistics Sweden (2022a) *Marken i Sverige*, *Statistiska Centralbyrån*. Available at: https://www.scb.se/hitta-statistik/sverige-i-siffror/miljo/marken-i-sverige/ (Accessed: 4 March 2023).
- Statistics Sweden (2022b) Utsläpp och upptag av växthusgaser från markanvändning, förändrad markanvändning och skogsbruk efter växthusgas och delsektor, Statistikdatabasen. Available at: http://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START_MI_MI0107/MI01 07MarkanvN/ (Accessed: 6 May 2022).

Statistics Sweden (2023) *Hushållens utgifter (HUT)*, *Statistiska Centralbyrån*. Available at: https://www.scb.se/hitta-statistik/statistik-efter-amne/hushallens-ekonomi/hushallens-utgifter/hushallens-utgifter-hut/ (Accessed: 9 January 2023).

- Statistics Sweden (no date) Energi- och koldioxidskatt samt totala växthusgasutsläpp 2020, per näringsgren (SNI 2007) i procent, Statistiska Centralbyrån. Available at: https://www.scb.se/hitta-statistik/statistik-efter-amne/miljo/miljoekonomi-ochhallbar-utveckling/miljorakenskaper/pong/tabell-och
 - diagram/miljoskatter/energi--och-koldioxidskatt-samt-totala-vaxthusgasutslapp-2020-per-naringsgren-sni-2007-i-procent/ (Accessed: 9 January 2023).
- Steffen, W. *et al.* (2015) 'Planetary boundaries: Guiding human development on a changing planet', *Science*, 347(6223), p. 1259855. Available at: https://doi.org/10.1126/science.1259855.
- Strid, A. *et al.* (2021) 'Diets benefiting health and climate relate to longevity in northern Sweden', *The American Journal of Clinical Nutrition*, 114(2), pp. 515–529. Available at: https://doi.org/10.1093/ajcn/nqab073.
- Sundelöf, A. *et al.* (2022) *Fisk- och skaldjursbestånd i hav och sötvatten 2020 (resurs- och miljööversikt).* text 2022:2. Havs- och vattenmyndigheten. Available at: https://www.havochvatten.se/data-kartor-och-rapporter/rapporter-och-andra-publikationer/publikationer/2021-02-16-fisk--och-skaldjursbestand-i-hav-och-sotvatten-2020-resurs--och-miljooversikt.html (Accessed: 12 December 2022).
- Swedish Board of Agriculture (2014) Marknadsöversikt spannmål. Report 2014:08.
- Swedish Board of Agriculture (2021) Sveriges utrikeshandel med jordbruksvaror och livsmedel 2018–2020. 2021:9.
- Swedish Board of Agriculture (2022) *Direktkonsumtion efter Vara, Variabel och År, PxWeb.* Available at: http://statistik.sjv.se/PXWebPXWeb/pxweb/sv/Jordbruksverkets statistikdatabas/Jordbruksverkets statistikdatabas__Konsumtion av livsmedel/JO1301K1.px/ (Accessed: 4 March 2023).
- Swedish Energy Agency (2019) *Energianvändningen inom jordbruket*. Available at: https://www.energimyndigheten.se/statistik/den-officiellastatistiken/statistikprodukter/energianvandningen-inom-jordbruket/ (Accessed: 14 March 2023).
- Swedish Energy Agency (2022) *Industrins energianvändning*. Available at: https://www.energimyndigheten.se/statistik/den-officiella-statistiken/statistikprodukter/industrins-energianvandning/ (Accessed: 3 March 2023).
- Swedish Environmental Protection Agency (2021) *Miljömålen 2021*. 6968. Swedish Environmental Protection Agency. Available at: https://www.naturvardsverket.se/978-91-620-6968-1 (Accessed: 12 December 2022).
- Swedish Government Official Reports (2020) *Hållbar slamhantering SOU 2020:3*. SOU 2020:3. Available at: https://www.regeringen.se/contentassets/3d68880d2e6942f3a1dccb158e46beb7/h allbar-slamhantering-sou-20203/.
- Temme, E.H.M. *et al.* (2013) 'Replacement of meat and dairy by plant-derived foods: estimated effects on land use, iron and SFA intakes in young Dutch adult females', *Public Health Nutrition*, 16(10), pp. 1900–1907. Available at: https://doi.org/10.1017/S1368980013000232.
- The Public Health Agency of Sweden (2019) *Skolbarns hälsovanor i Sverige 2017/2018 grundrapport.* The Public Health Agency of Sweden. Available at: https://www.folkhalsomyndigheten.se/publikationer-och-material/publikationsarkiv/s/skolbarns-halsovanor-i-sverige-2017-2018-grundrapport/ (Accessed: 3 November 2022).
- The Public Health Agency of Sweden (2022a) Kärnindikatorer för uppföljning av det folkhälsopolitiska målet. The Public Health Agency of Sweden. Available at:

https://www.folkhalsomyndigheten.se/publikationer-och-

material/publikationsarkiv/k/karnindikatorer-for-uppfoljning-av-det-folkhalsopolitiska-malet/ (Accessed: 11 November 2022).

- The Public Health Agency of Sweden (2022b) *Nationella folkhälsoenkäten Hälsa på lika villkor.* Available at:
 - https://www.folkhalsomyndigheten.se/folkhalsorapportering-statistik/om-varadatainsamlingar/nationella-folkhalsoenkaten/ (Accessed: 28 September 2022).
- The Public Health Agency of Sweden (2022c) Övervikt och fetma. Available at: https://www.folkhalsomyndigheten.se/folkhalsorapportering-statistik/tolkadrapportering/folkhalsans-utveckling/resultat/halsa/overvikt-och-fetma/ (Accessed: 27 September 2022).
- The Public Health Agency of Sweden (2022d) *Statistik om smittsamma sjukdomar A-Ö*. Available at: https://www.folkhalsomyndigheten.se/folkhalsorapporteringstatistik/statistik-a-o/sjukdomsstatistik/ (Accessed: 21 February 2023).
- The Public Health Agency of Sweden (2022e) *Vikt statistik inom området folkhälsa*. Available at: https://www.folkhalsomyndigheten.se/folkhalsorapporteringstatistik/statistik-a-o/ovrig-statistik-a-o/vikt/ (Accessed: 3 November 2022).
- The Swedish Chemical Agency (2004) *Pesticide Risk Indicators at National Level and Farm Level - A Swedish Approach.* text PM 6/04. Available at: https://www.kemi.se/en/publications/pms/2004/pm-6-04-pesticide-riskindicators-at-national-level-and-farm-level---a-swedish-approach (Accessed: 12 December 2022).
- Tilman, D. *et al.* (2017) 'Future threats to biodiversity and pathways to their prevention', *Nature*, 546(7656), pp. 73–81. Available at: https://doi.org/10.1038/nature22900.
- Tiseo, K. *et al.* (2020) 'Global Trends in Antimicrobial Use in Food Animals from 2017 to 2030', *Antibiotics (Basel, Switzerland)*, 9(12), p. 918. Available at: https://doi.org/10.3390/antibiotics9120918.
- UNEP (2022) Resolution adopted by the United Nations Environment Assembly on 2 March 2022. Animal welfare-environment-sustainable development nexus. United Nations Environment Assembly of the United Nations Environment Programme. Available at: https://wedocs.unep.org/bitstream/handle/20.500.11822/39795/ANIMAL%20WE LFARE%e2%80%93ENVIRONMENT%e2%80%93SUSTAINABLE%20DEVE LOPMENT%20NEXUS.%20English.pdf?sequence=1&isAllowed=y.
- UNFCCC (2015) The Paris Agreement, United Nations Framework Convention on Climate Change. Available at: https://unfccc.int/process-and-meetings/the-parisagreement (Accessed: 21 February 2023).
- United Nations (2008) United Nations Declaration on the Rights of Indigenous Peoples, United Nations For Indigenous Peoples. Available at: https://www.un.org/esa/socdev/unpfii/documents/DRIPS_en.pdf (Accessed: 21 February 2023).
- United Nations (2021) Sweden. 2021 National Inventory Report (NIR) / UNFCCC. Available at: https://unfccc.int/documents/271847 (Accessed: 2 March 2023).
- Vanbergen, A.J. et al. (2020) 'Chapter Six Transformation of agricultural landscapes in the Anthropocene: Nature's contributions to people, agriculture and food security', in D.A. Bohan and A.J. Vanbergen (eds) Advances in Ecological Research. Academic Press (The Future of Agricultural Landscapes, Part I), pp. 193–253. Available at: https://doi.org/10.1016/bs.aecr.2020.08.002.
- Vermeulen, S.J., Campbell, B.M. and Ingram, J.S.I. (2012) 'Climate Change and Food Systems', Annual Review of Environment and Resources, 37(1), pp. 195–222. Available at: https://doi.org/10.1146/annurev-environ-020411-130608.
- Vrasdonk, E., Palme, U. and Lennartsson, T. (2019) 'Reference situations for biodiversity in life cycle assessments: conceptual bridging between LCA and conservation biology', *The International Journal of Life Cycle Assessment*, 24(9), pp. 1631– 1642. Available at: https://doi.org/10.1007/s11367-019-01594-x.

- Wallander, J. *et al.* (2019) *Plan för odlingslandskapets biologiska mångfald.* 19:1. Swedish Board of Agriculture. Available at: https://webbutiken.jordbruksverket.se/sv/artiklar/ra191.html (Accessed: 21 February 2023).
- Wallinga, D. et al. (2022) 'A Review of the Effectiveness of Current US Policies on Antimicrobial Use in Meat and Poultry Production', Current Environmental Health Reports, 9(2), pp. 339–354. Available at: https://doi.org/10.1007/s40572-022-00351-x.
- Wenche, E. et al. (2020) Tillstånd och trender för arter och deras livsmiljöer rödlistade arter i Sverige 2020 - SLU Artdatabanken. SLU Artdatabanken rapporterar 24. Uppsala: SLU Artdatabanken.
- WHO (2015) WHO estimates of the global burden of foodborne diseases: foodborne diseases burden epidemiology reference group 2007-2015. World Health Organization. Available at: https://www.who.int/publications-detailredirect/9789241565165 (Accessed: 29 September 2022).
- WHO (2019) *Foodborne diseases*, *World Health Organization*. Available at: https://www.who.int/europe/news-room/fact-sheets/item/foodborne-diseases (Accessed: 29 September 2022).
- WHO (2022a) *Foodborne diseases*, *World Health Organization*. Available at: https://www.who.int/health-topics/foodborne-diseases (Accessed: 29 September 2022).
- WHO (2022b) WHO manual on sugar-sweetened beverage taxation policies to promote healthy diets. Available at: https://www.who.int/publications-detailredirect/9789240056299 (Accessed: 7 March 2023).
- Willett, W. et al. (2019) 'Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems', *Lancet (London, England)*, 393(10170), pp. 447–492. Available at: https://doi.org/10.1016/S0140-6736(18)31788-4.
- World Organisation for Animal Health (no date) 'Terrestrial Code Online Access', WOAH - World Organisation for Animal Health. Available at: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrialcode-online-access/ (Accessed: 9 January 2023).
- WWF (2023) *Lax*, *Världsnaturfonden WWF*. Available at: https://www.wwf.se/fiskguiden/lax/ (Accessed: 14 March 2023).
- Ziegler, F. *et al.* (no date) 'Lax, hållbart och hälsosamt?' Seawin policy brief. Available at: https://www.ri.se/sites/default/files/2022-

11/Lax_Hallbart%20och%20halsosamt_FINAL_0.pdf.

